Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Trujillano is active.

Publication


Featured researches published by Daniel Trujillano.


Nature Genetics | 2012

KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron

Hélène Louis-Dit-Picard; Julien Barc; Daniel Trujillano; Stéphanie Miserey-Lenkei; Nabila Bouatia-Naji; Olena Pylypenko; Geneviève Beaurain; Amélie Bonnefond; Olivier Sand; Christophe Simian; Emmanuelle Vidal-Petiot; Christelle Soukaseum; Chantal Mandet; Françoise Broux; Olivier Chabre; Michel Delahousse; V. Esnault; Béatrice Fiquet; Pascal Houillier; Corinne Isnard Bagnis; Jens Koenig; Martin Konrad; Paul Landais; Chebel Mourani; Patrick Niaudet; Vincent Probst; Christel Thauvin; Robert J. Unwin; Steven D. Soroka; Georg B. Ehret

Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na+-Cl− cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure.


European Journal of Human Genetics | 2017

Clinical exome sequencing: results from 2819 samples reflecting 1000 families.

Daniel Trujillano; Aida M. Bertoli-Avella; Krishna Kumar Kandaswamy; Maximilian E. R. Weiss; Julia Köster; Anett Marais; Omid Paknia; Rolf Schröder; Jose Maria Garcia-Aznar; Martin Werber; Oliver Brandau; Maria Calvo del Castillo; Caterina Baldi; Karen Wessel; Shivendra Kishore; Nahid Nahavandi; Wafaa Eyaid; Muhammad Talal Al Rifai; Ahmed Al-Rumayyan; Waleed Al-Twaijri; Ali Alothaim; Amal Alhashem; Nouriya Al-Sannaa; Mohammed Al-Balwi; Majid Alfadhel; Arndt Rolfs; Rami Abou Jamra

We report our results of 1000 diagnostic WES cases based on 2819 sequenced samples from 54 countries with a wide phenotypic spectrum. Clinical information given by the requesting physicians was translated to HPO terms. WES processes were performed according to standardized settings. We identified the underlying pathogenic or likely pathogenic variants in 307 families (30.7%). In further 253 families (25.3%) a variant of unknown significance, possibly explaining the clinical symptoms of the index patient was identified. WES enabled timely diagnosing of genetic diseases, validation of causality of specific genetic disorders of PTPN23, KCTD3, SCN3A, PPOX, FRMPD4, and SCN1B, and setting dual diagnoses by detecting two causative variants in distinct genes in the same patient. We observed a better diagnostic yield in consanguineous families, in severe and in syndromic phenotypes. Our results suggest that WES has a better yield in patients that present with several symptoms, rather than an isolated abnormality. We also validate the clinical benefit of WES as an effective diagnostic tool, particularly in nonspecific or heterogeneous phenotypes. We recommend WES as a first-line diagnostic in all cases without a clear differential diagnosis, to facilitate personal medical care.


Nature | 2015

Mutations in DCHS1 cause mitral valve prolapse.

Ronen Durst; Kimberly Sauls; David S. Peal; Annemarieke deVlaming; Katelynn Toomer; Maire Leyne; Monica Salani; Michael E. Talkowski; Harrison Brand; Maelle Perrocheau; Charles Simpson; Christopher Jett; Matthew R. Stone; Florie A. Charles; Colby Chiang; Stacey N. Lynch; Nabila Bouatia-Naji; Francesca N. Delling; Lisa A. Freed; Christophe Tribouilloy; Thierry Le Tourneau; Hervé Lemarec; Leticia Fernandez-Friera; Jorge Solis; Daniel Trujillano; Stephan Ossowski; Xavier Estivill; Christian Dina; Patrick Bruneval; Adrian H. Chester

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1+/− mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1+/− mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


European Journal of Human Genetics | 2015

Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity

Gemma Bullich; Daniel Trujillano; Sheila Santín; Stephan Ossowski; Santiago Mendizábal; Gloria Fraga; Alvaro Madrid; Gema Ariceta; José Ballarín; Roser Torra; Xavier Estivill; Elisabet Ars

Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.


Molecular Genetics & Genomic Medicine | 2014

Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing

Daniel Trujillano; Gemma Bullich; Stephan Ossowski; José Ballarín; Roser Torra; Xavier Estivill; Elisabet Ars

Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long‐range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysis using conventional techniques limits its widespread application in clinical settings. We performed targeted next‐generation sequencing (NGS) of PKD1 and PKD2. Pooled barcoded DNA patient libraries were enriched by in‐solution hybridization with PKD1 and PKD2 capture probes. Bioinformatics analysis was performed using an in‐house developed pipeline. We validated the assay in a cohort of 36 patients with previously known PKD1 and PKD2 mutations and five control individuals. Then, we used the same assay and bioinformatics analysis in a discovery cohort of 12 uncharacterized patients. We detected 35 out of 36 known definitely, highly likely, and likely pathogenic mutations in the validation cohort, including two large deletions. In the discovery cohort, we detected 11 different pathogenic mutations in 10 out of 12 patients. This study demonstrates that laborious long‐range PCRs of the repeated PKD1 region can be avoided by in‐solution enrichment of PKD1 and PKD2 and NGS. This strategy significantly reduces the cost and time for simultaneous PKD1 and PKD2 sequence analysis, facilitating routine genetic diagnostics of ADPKD.


Clinical Genetics | 2016

A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy

Katta M. Girisha; Anju Shukla; Daniel Trujillano; Gandham SriLakshmi Bhavani; Malavika Hebbar; Rajagopal Kadavigere; Arndt Rolfs

Intraflagellar transport (IFT) is vital for the functioning of primary cilia. Defects in several components of IFT complexes cause a spectrum of ciliopathies with variable involvement of skeleton, brain, eyes, ectoderm and kidneys. We examined a child from a consanguineous family who had short stature, narrow thorax, short hands and feet, postaxial polydactyly of hands, pigmentary retinopathy, small teeth and skeletal dysplasia. The clinical phenotype of the child shows significant overlap with cranioectodermal dysplasia type I (Sensenbrenner syndrome). Whole‐exome sequencing revealed a homozygous nonsense variant p.R142* in IFT52 encoding an IFT‐B core complex protein as the probable cause of her condition. This is the first report of a human disease associated with IFT52.


Journal of Medical Genetics | 2013

Next generation diagnostics of cystic fibrosis and CFTR-related disorders by targeted multiplex high-coverage resequencing of CFTR

Daniel Trujillano; Maria D. Ramos; Juan R. González; Cristian Tornador; F. Sotillo; Geòrgia Escaramís; Stephan Ossowski; Lluís Armengol; Teresa Casals; Xavier Estivill

Background Here we have developed a novel and much more efficient strategy for the complete molecular characterisation of the cystic fibrosis (CF) transmembrane regulator (CFTR) gene, based on multiplexed targeted resequencing. We have tested this approach in a cohort of 92 samples with previously characterised CFTR mutations and polymorphisms. Methods After enrichment of the pooled barcoded DNA libraries with a custom NimbleGen SeqCap EZ Choice array (Roche) and sequencing with a HiSeq2000 (Illumina) sequencer, we applied several bioinformatics tools to call mutations and polymorphisms in CFTR. Results The combination of several bioinformatics tools allowed us to detect all known pathogenic variants (point mutations, short insertions/deletions, and large genomic rearrangements) and polymorphisms (including the poly-T and poly-thymidine-guanine polymorphic tracts) in the 92 samples. In addition, we report the precise characterisation of the breakpoints of seven genomic rearrangements in CFTR, including those of a novel deletion of exon 22 and a complex 85 kb inversion which includes two large deletions affecting exons 4–8 and 12–21, respectively. Conclusions This work is a proof-of-principle that targeted resequencing is an accurate and cost-effective approach for the genetic testing of CF and CFTR-related disorders (ie, male infertility) amenable to the routine clinical practice, and ready to substitute classical molecular methods in medical genetics.


The Journal of Molecular Diagnostics | 2015

Next-generation sequencing of the BRCA1 and BRCA2 genes for the genetic diagnostics of hereditary breast and/or ovarian cancer.

Daniel Trujillano; Maximilian E. R. Weiss; Juliane Schneider; Julia Köster; Efstathios B. Papachristos; Viatcheslav Saviouk; Tetyana Zakharkina; Nahid Nahavandi; Lejla Kovacevic; Arndt Rolfs

Genetic testing for hereditary breast and/or ovarian cancer mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the BRCA1 and BRCA2 genes. We explored a more efficient genetic screening strategy based on next-generation sequencing of the BRCA1 and BRCA2 genes in 210 hereditary breast and/or ovarian cancer patients. We first validated this approach in a cohort of 115 samples with previously known BRCA1 and BRCA2 mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeq BRCA1 and BRCA2 panel. The DNA Libraries were pooled, barcoded, and sequenced using an Ion Torrent Personal Genome Machine sequencer. The combination of different robust bioinformatics tools allowed detection of all previously known pathogenic mutations and polymorphisms in the 115 samples, without detecting spurious pathogenic calls. We then used the same assay in a discovery cohort of 95 uncharacterized hereditary breast and/or ovarian cancer patients for BRCA1 and BRCA2. In addition, we describe the allelic frequencies across 210 hereditary breast and/or ovarian cancer patients of 74 unique definitely and likely pathogenic and uncertain BRCA1 and BRCA2 variants, some of which have not been previously annotated in the public databases. Targeted next-generation sequencing is ready to substitute classic molecular methods to perform genetic testing on the BRCA1 and BRCA2 genes and provides a greater opportunity for more comprehensive testing of at-risk patients.


European Journal of Human Genetics | 2014

Accurate molecular diagnosis of phenylketonuria and tetrahydrobiopterin-deficient hyperphenylalaninemias using high-throughput targeted sequencing

Daniel Trujillano; Belén Pérez; Justo González; Cristian Tornador; Rosa Navarrete; Geòrgia Escaramís; Stephan Ossowski; Lluís Armengol; Verónica Cornejo; Lourdes R. Desviat; Magdalena Ugarte; Xavier Estivill

Genetic diagnostics of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficient hyperphenylalaninemia (BH4DH) rely on methods that scan for known mutations or on laborious molecular tools that use Sanger sequencing. We have implemented a novel and much more efficient strategy based on high-throughput multiplex-targeted resequencing of four genes (PAH, GCH1, PTS, and QDPR) that, when affected by loss-of-function mutations, cause PKU and BH4DH. We have validated this approach in a cohort of 95 samples with the previously known PAH, GCH1, PTS, and QDPR mutations and one control sample. Pooled barcoded DNA libraries were enriched using a custom NimbleGen SeqCap EZ Choice array and sequenced using a HiSeq2000 sequencer. The combination of several robust bioinformatics tools allowed us to detect all known pathogenic mutations (point mutations, short insertions/deletions, and large genomic rearrangements) in the 95 samples, without detecting spurious calls in these genes in the control sample. We then used the same capture assay in a discovery cohort of 11 uncharacterized HPA patients using a MiSeq sequencer. In addition, we report the precise characterization of the breakpoints of four genomic rearrangements in PAH, including a novel deletion of 899 bp in intron 3. Our study is a proof-of-principle that high-throughput-targeted resequencing is ready to substitute classical molecular methods to perform differential genetic diagnosis of hyperphenylalaninemias, allowing the establishment of specifically tailored treatments a few days after birth.


JIMD Reports | 2015

Asparagine Synthetase Deficiency: New Inborn Errors of Metabolism

Majid Alfadhel; Muhammad Talal Alrifai; Daniel Trujillano; Hesham Alshaalan; Ali Al Othaim; Shatha Al Rasheed; Hussam Assiri; Abdulrhman A. Alqahtani; Manal Alaamery; Arndt Rolfs; Wafaa Eyaid

BACKGROUND Asparagine synthetase deficiency (ASD) is a newly identified neurometabolic disorder characterized by severe congenital microcephaly, severe global developmental delay, intractable seizure disorder, and spastic quadriplegia. Brain MRI showed brain atrophy, delayed myelination, and simplified gyriform pattern. METHODS We report ASD deficiency in a 2- and 4-year-old sibling. On them, we described clinical, biochemical, and molecular findings, and we compared our results with previously reported cases. RESULTS We identified a homozygous novel missense mutation in ASNS gene in both probands and we demonstrated low CSF and plasma asparagine in both patients. CONCLUSIONS Clinicians should suspect ASD deficiency in any newborn presented with severe congenital microcephaly followed by severe epileptic encephalopathy and global developmental delay. CSF asparagine level is low in this disorder while plasma may be low.

Collaboration


Dive into the Daniel Trujillano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arndt Rolfs

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Koenig

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Martin Konrad

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chebel Mourani

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge