Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danièle Werck-Reichhart is active.

Publication


Featured researches published by Danièle Werck-Reichhart.


Genome Biology | 2000

Cytochromes P450: a success story

Danièle Werck-Reichhart; René Feyereisen

SummaryCytochrome P450 proteins, named for the absorption band at 450 nm of their carbon-monoxide-bound form, are one of the largest superfamilies of enzyme proteins. The P450 genes (also called CYP) are found in the genomes of virtually all organisms, but their number has exploded in plants. Their amino-acid sequences are extremely diverse, with levels of identity as low as 16% in some cases, but their structural fold has remained the same throughout evolution. P450s are heme-thiolate proteins; their most conserved structural features are related to heme binding and common catalytic properties, the major feature being a completely conserved cysteine serving as fifth (axial) ligand to the heme iron. Canonical P450s use electrons from NAD(P)H to catalyze activation of molecular oxygen, leading to regiospecific and stereospecific oxidative attack of a plethora of substrates. The reactions carried out by P450s, though often hydroxylation, can be extremely diverse and sometimes surprising. They contribute to vital processes such as carbon source assimilation, biosynthesis of hormones and of structural components of living organisms, and also carcinogenesis and degradation of xenobiotics. In plants, chemical defense seems to be a major reason for P450 diversification. In prokaryotes, P450s are soluble proteins. In eukaryotes, they are usually bound to the endoplasmic reticulum or inner mitochondrial membranes. The electron carrier proteins used for conveying reducing equivalents from NAD(P)H differ with subcellular localization. P450 enzymes catalyze many reactions that are important in drug metabolism or that have practical applications in industry; their economic impact is therefore considerable.


Plant Physiology | 2004

Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot

David R. Nelson; Mary A. Schuler; Suzanne M. Paquette; Danièle Werck-Reichhart; Søren Bak

Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.


The Plant Cell | 2010

Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns

Yves Alain Millet; Cristian H. Danna; Nicole K. Clay; Wisuwat Songnuan; Matthew D. Simon; Danièle Werck-Reichhart; Frederick M. Ausubel

This study describes Arabidopsis root innate immune responses to various microbial elicitors and their salicylic acid signaling-independent suppression by coronatine, a phytotoxin produced by Pseudomonas syringae. These experiments have revealed new features of the root response to pathogen attack and the mechanisms that pathogens in turn may employ to block the host innate immune response. Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.


Plant Journal | 2011

A P450-centric view of plant evolution.

David R. Nelson; Danièle Werck-Reichhart

Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function.


Current Opinion in Biotechnology | 2003

Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation

Marc Morant; Søren Bak; Birger Lindberg Møller; Danièle Werck-Reichhart

Cytochromes P450 catalyse extremely diverse and often complex regiospecific and/or stereospecific reactions in the biosynthesis or catabolism of plant bioactive molecules. Engineered P450 expression is needed for low-cost production of antineoplastic drugs such as taxol or indole alkaloids and offers the possibility to increase the content of nutraceuticals such as phytoestrogens and antioxidants in plants. Natural products may serve important functions in plant defence and metabolic engineering of P450s is a prime target to improve plant defence against insects and pathogens. Herbicides, pollutants and other xenobiotics are metabolised by some plant P450 enzymes. These P450s are tools to modify herbicide tolerance, as selectable markers and for bioremediation.


Trends in Plant Science | 2000

Cytochromes P450 for engineering herbicide tolerance

Danièle Werck-Reichhart; Alain Hehn; Luc Didierjean

In recent years, genome sequencing has revealed that cytochromes P450 (P450s) constitute the largest family of enzymatic proteins in higher plants. P450s are mono-oxygenases that insert one atom of oxygen into inert hydrophobic molecules to make them more reactive and hydrosoluble. Besides their physiological functions in the biosynthesis of hormones, lipids and secondary metabolites, P450s help plants to cope with harmful exogenous chemicals including pesticides and industrial pollutants, making them less phytotoxic. The recovery of an increasing number of plant P450 genes in recombinant form has enabled their use in experimentation, which has revealed their extraordinary potential for engineering herbicide tolerance, biosafening, bioremediation and green chemistry.


Environmental Science and Pollution Research | 2002

Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

Patricia J. Harvey; Bruno F. Campanella; Paula M. L. Castro; Hans Harms; Eric Lichtfouse; Anton R. Schäffner; Stanislav Smrček; Danièle Werck-Reichhart

Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottlenecks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health.Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed.In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the ‘bound’ residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.


The Plant Cell | 2010

Cytochrome P450 Family Member CYP704B2 Catalyzes the ω -Hydroxylation of Fatty Acids and Is Required for Anther Cutin Biosynthesis and Pollen Exine Formation in Rice

Hui Li; Franck Pinot; Vincent Sauveplane; Danièle Werck-Reichhart; Patrik Diehl; Lukas Schreiber; Rochus Franke; Ping Zhang; Liang Chen; Yawei Gao; Wanqi Liang; Dabing Zhang

This work finds that a fatty acid ω -hydroxylation pathway in rice that relies on an ancient cytochrome P450 subfamily is essential for the formation of both anther cuticle and pollen exine during plant male reproductive and spore development. The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, aborted pollen grains without detectable exine, and undeveloped anther cuticle. In addition, chemical composition analysis indicated that cutin monomers were hardly detectable in the cyp704B2 anthers. These defects are caused by a mutation in a cytochrome P450 family gene, CYP704B2. The CYP704B2 transcript is specifically detected in the tapetum and the microspore from stage 8 of anther development to stage 10. Heterologous expression of CYP704B2 in yeast demonstrated that CYP704B2 catalyzes the production of ω -hydroxylated fatty acids with 16 and 18 carbon chains. Our results provide insights into the biosynthesis of the two biopolymers sporopollenin and cutin. Specifically, our study indicates that the ω -hydroxylation pathway of fatty acids relying on this ancient CYP704B family, conserved from moss to angiosperms, is essential for the formation of both cuticle and exine during plant male reproductive and spore development.


Nature Communications | 2014

The seco-iridoid pathway from Catharanthus roseus

Karel Miettinen; Lemeng Dong; Nicolas Navrot; Thomas Schneider; Vincent Burlat; Jacob Pollier; Lotte Woittiez; Sander van der Krol; Raphaël Lugan; Tina Ilc; Robert Verpoorte; Kirsi-Marja Oksman-Caldentey; Enrico Martinoia; Harro J. Bouwmeester; Alain Goossens; Johan Memelink; Danièle Werck-Reichhart

The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.


Plant Molecular Biology | 2004

Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism

Sabine Glombitza; Pierre-Henri Dubuis; Oliver Thulke; Gerhard Welzl; Lucien Bovet; Michael Götz; Matthias Affenzeller; Birgit Geist; Alain Hehn; Carole Asnaghi; Dieter Ernst; Harald K. Seidlitz; Heidrun Gundlach; Klaus F. X. Mayer; Enrico Martinoia; Danièle Werck-Reichhart; Felix Mauch; Anton R. Schäffner

Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.

Collaboration


Dive into the Danièle Werck-Reichhart's collaboration.

Top Co-Authors

Avatar

Francis Durst

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascaline Ullmann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yannick Batard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alain Hehn

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar

Marc Morant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugues Renault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Raphaël Lugan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnès Lesot

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge