Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugues Renault is active.

Publication


Featured researches published by Hugues Renault.


BMC Plant Biology | 2010

The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance

Hugues Renault; Valérie Roussel; Abdelhak El Amrani; Matthieu Arzel; David Renault; Alain Bouchereau; Carole Deleu

BackgroundGABA (γ-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress.ResultsWe identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content.ConclusionsGABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots.


Current Opinion in Plant Biology | 2014

Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

Hugues Renault; Jean-Etienne Bassard; Björn Hamberger; Danièle Werck-Reichhart

Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes.


The Plant Cell | 2012

Protein–Protein and Protein–Membrane Associations in the Lignin Pathway

Jean-Etienne Bassard; Ludovic Richert; Jan Geerinck; Hugues Renault; Frédéric Duval; Pascaline Ullmann; Martine Schmitt; Etienne H. Meyer; Jérôme Mutterer; Wout Boerjan; Geert De Jaeger; Yves Mély; Alain Goossens; Danièle Werck-Reichhart

Analysis of the supramolecular organization of enzymes in the lignin pathway shows that cytochrome P450s oligomerize and move along with the very mobile plant endoplasmic reticulum. Their expression favors relocalization of their soluble partner proteins nearer the membrane and association of sequential enzymes in the pathway. Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.


Plant and Cell Physiology | 2011

GABA Accumulation Causes Cell Elongation Defects and a Decrease in Expression of Genes Encoding Secreted and Cell Wall-Related Proteins in Arabidopsis thaliana

Hugues Renault; Abdelhak El Amrani; Ravishankar Palanivelu; Emily P. Updegraff; Agnès Yu; Jean-Pierre Renou; Daphne Preuss; Alain Bouchereau; Carole Deleu

GABA (γ-aminobutyric acid), a non-protein amino acid, is a signaling factor in many organisms. In plants, GABA is known to accumulate under a variety of stresses. However, the consequence of GABA accumulation, especially in vegetative tissues, remains poorly understood. Moreover, gene expression changes as a consequence of GABA accumulation in plants are largely unknown. The pop2 mutant, which is defective in GABA catabolism and accumulates GABA, is a good model to examine the effects of GABA accumulation on plant development. Here, we show that the pop2 mutants have pollen tube elongation defects in the transmitting tract of pistils. Additionally, we observed growth inhibition of primary root and dark-grown hypocotyl, at least in part due to cell elongation defects, upon exposure to exogenous GABA. Microarray analysis of pop2-1 seedlings grown in GABA-supplemented medium revealed that 60% of genes whose expression decreased encode secreted proteins. Besides, functional classification of genes with decreased expression in the pop2-1 mutant showed that cell wall-related genes were significantly enriched in the microarray data set, consistent with the cell elongation defects observed in pop2 mutants. Our study identifies cell elongation defects caused by GABA accumulation in both reproductive and vegetative tissues. Additionally, our results show that genes that encode secreted and cell wall-related proteins may mediate some of the effects of GABA accumulation. The potential function of GABA as a growth control factor under stressful conditions is discussed.


Plant Cell and Environment | 2013

γ‐Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots

Hugues Renault; Abdelhak El Amrani; Adeline Berger; Grégory Mouille; Ludivine Soubigou-Taconnat; Alain Bouchereau; Carole Deleu

Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress.


Plant Physiology | 2008

Elongation Changes of Exploratory and Root Hair Systems Induced by Aminocyclopropane Carboxylic Acid and Aminoethoxyvinylglycine Affect Nitrate Uptake and BnNrt2.1 and BnNrt1.1 Transporter Gene Expression in Oilseed Rape

Antonin Leblanc; Hugues Renault; Julien Lecourt; Philippe Etienne; Carole Deleu

Ethylene is a plant hormone that plays a major role in the elongation of both exploratory and root hair systems. Here, we demonstrate in Brassica napus seedlings that treatments with the ethylene precursor, aminocyclopropane carboxylic acid (ACC) and the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), cause modification of the dynamic processes of primary root and root hair elongation in a dose-dependent way. Moreover, restoration of root elongation in AVG-treated seedlings by 1 mm l-glutamate suggested that high concentrations of AVG affect root elongation through nonoverlapping ethylene metabolic pathway involving pyridoxal 5′-P-dependent enzymes of nitrate (N) metabolism. In this respect, treatments with high concentrations of ACC and AVG (10 μm) over 5 d revealed significant differences in relationships between root growth architecture and N uptake capacities. Indeed, if these treatments decreased severely the elongation of the exploratory root system (primary root and lateral roots) they had opposing effects on the root hair system. Although ACC increased the length and number of root hairs, the rate of N uptake and the transcript level of the N transporter BnNrt2.1 were markedly reduced. In contrast, the decrease in root hair length and number in AVG-treated seedlings was overcompensated by an increase of N uptake and BnNrt2.1 gene expression. These root architectural changes demonstrated that BnNrt2.1 expression levels were more correlated to the changes of the exploratory root system than the changes of the root hair system. The difference between treatments in N transporters BnNrt1.1 and BnNrt2.1 gene expression is discussed with regard to presumed transport functions of BnNrt1.1 in relation to root elongation.


Plant Physiology | 2014

Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides

René Höfer; Benoît Boachon; Hugues Renault; Carole Gavira; Laurence Miesch; Juliana Iglesias; Jean-François Ginglinger; Lionel Allouche; Michel Miesch; Sébastien Grec; Romain Larbat; Danièle Werck-Reichhart

Fast diversification and versatility of a subfamily of cytochrome P450 enzymes in Brassicaceae has been important in their metabolism of both monoterpenols and herbicides. Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance.


Nature Communications | 2017

A phenol-enriched cuticle is ancestral to lignin evolution in land plants

Hugues Renault; Annette Alber; Nelly A. Horst; Alexandra Basilio Lopes; Eric A. Fich; Lucie Kriegshauser; Gertrud Wiedemann; Pascaline Ullmann; Laurence Herrgott; Mathieu Erhardt; Emmanuelle Pineau; Jürgen Ehlting; Martine Schmitt; Jocelyn K. C. Rose; Ralf Reski; Danièle Werck-Reichhart

Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.


Plant Physiology | 2014

Dual function of the CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides

René Höfer; Benoît Boachon; Hugues Renault; Carole Gavira; Laurence Miesch; Juliana Iglesias; Jean-François Ginglinger; Lionel Allouche; Michel Miesch; Sebastien Grec; Romain Larbat; Daniele Werck

Fast diversification and versatility of a subfamily of cytochrome P450 enzymes in Brassicaceae has been important in their metabolism of both monoterpenols and herbicides. Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance.


Plant Physiology | 2016

Structural redesigning Arabidopsis lignins into alkali-soluble lignins through the expression of p-coumaroyl-CoA:monolignol transferase (PMT)

Richard Sibout; Philippe Le Bris; Frédéric Legée; Laurent Cézard; Hugues Renault; Catherine Lapierre

Arabidopsis lignins, which are genetically p-coumaroylated up to the grass lignin level, display dramatic structural changes that make them more amenable to solubilization in alkali at room temperature. Grass lignins can contain up to 10% to 15% by weight of p-coumaric esters. This acylation is performed on monolignols under the catalysis of p-coumaroyl-coenzyme A monolignol transferase (PMT). To study the impact of p-coumaroylation on lignification, we first introduced the Brachypodium distachyon Bradi2g36910 (BdPMT1) gene into Arabidopsis (Arabidopsis thaliana) under the control of the constitutive maize (Zea mays) ubiquitin promoter. The resulting p-coumaroylation was far lower than that of lignins from mature grass stems and had no impact on stem lignin content. By contrast, introducing either the BdPMT1 or the Bradi1g36980 (BdPMT2) gene into Arabidopsis under the control of the Arabidopsis cinnamate-4-hydroxylase promoter boosted the p-coumaroylation of mature stems up to the grass lignin level (8% to 9% by weight), without any impact on plant development. The analysis of purified lignin fractions and the identification of diagnostic products confirmed that p-coumaric acid was associated with lignins. BdPMT1-driven p-coumaroylation was also obtained in the fah1 (deficient for ferulate 5-hydroxylase) and ccr1g (deficient for cinnamoyl-coenzyme A reductase) lines, albeit to a lower extent. Lignins from BdPMT1-expressing ccr1g lines were also found to be feruloylated. In Arabidopsis mature stems, substantial p-coumaroylation of lignins was achieved at the expense of lignin content and induced lignin structural alterations, with an unexpected increase of lignin units with free phenolic groups. This higher frequency of free phenolic groups in Arabidopsis lignins doubled their solubility in alkali at room temperature. These findings suggest that the formation of alkali-leachable lignin domains rich in free phenolic groups is favored when p-coumaroylated monolignols participate in lignification in a grass in a similar manner.

Collaboration


Dive into the Hugues Renault's collaboration.

Top Co-Authors

Avatar

Danièle Werck-Reichhart

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascaline Ullmann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoît Boachon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Emmanuelle Pineau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Raphaël Lugan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Miesch

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge