Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle A. Way is active.

Publication


Featured researches published by Danielle A. Way.


Tree Physiology | 2010

Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data

Danielle A. Way; Ram Oren

The response of tree growth to a change in temperature may differ in predictable ways. Trees with conservative growth strategies may have little ability to respond to a changing climate. In addition, high latitude and altitude tree growth may be temperature-limited and thus benefit from some degree of warming, as opposed to warm-adapted species. Using data from 63 studies, we examined whether trees from different functional groups and thermal niches differed in their growth response to a change in growth temperature. We also investigated whether responses predicted for a change in growth temperature (both reduced and elevated) were similar for increased temperatures by repeating the analysis on the subset of raised temperature data to confirm the validity of our results for use in a climate-warming scenario. Using both the temperature-change response and the warming response, we found that elevated temperatures enhanced growth (measured as shoot height, stem diameter and biomass) in deciduous species more than in evergreen trees. Tropical species were indeed more susceptible to warming-induced growth declines than temperate or boreal trees in both analyses. More carbon may be available to allocate to growth at high temperatures because respiration acclimated more strongly than photosynthesis, increasing carbon assimilation but moderating carbon losses. Trees that developed at elevated temperatures did not simply accelerate growth but followed different developmental trajectories than unwarmed trees, allocating more biomass to leaves and less to roots and growing taller for a given stem diameter. While there were insufficient data to analyze trends for particular species, we generated equations to describe general trends in tree growth to temperature changes and to warming for use at large spatial scales or where data are lacking. We discuss the implications of these results in the context of a changing climate and highlight the areas of greatest uncertainty regarding temperature and tree growth where future research is needed.


Photosynthesis Research | 2014

Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation

Wataru Yamori; Kouki Hikosaka; Danielle A. Way

Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (Topt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting Topt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis–temperature curve without shifting Topt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.


Journal of Experimental Botany | 2008

Rubisco, Rubisco activase, and global climate change

Rowan F. Sage; Danielle A. Way; David S. Kubien

Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling

William L. Bauerle; Ram Oren; Danielle A. Way; Song S. Qian; Paul C. Stoy; Peter E. Thornton; Joseph D. Bowden; Forrest M. Hoffman; Robert F. Reynolds

Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO2 cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y−1), resulting in a >3% (∼2 PgC y−1) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.


Photosynthesis Research | 2014

Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration

Danielle A. Way; Wataru Yamori

While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (Topt) and photosynthetic rates at the growth temperature (Agrowth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of Topt and Agrowth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.


Tree Physiology | 2012

Sunflecks in trees and forests: from photosynthetic physiology to global change biology

Danielle A. Way; Robert W. Pearcy

Sunflecks are brief, intermittent periods of high photon flux density (PFD) that can significantly improve carbon gain in shaded forest understories and lower canopies of trees. In this review, we discuss the physiological basis of leaf-level responses to sunflecks and the mechanisms plants use to tolerate sudden changes in PFD and leaf temperature induced by sunflecks. We also examine the potential effects of climate change stresses (including elevated temperatures, rising CO(2) concentrations and drought) on the ability of tree species to use sunflecks, and advocate more research to improve our predictions of seedling and tree carbon gain in future climates. Lastly, while we have the ability to model realistic responses of photosynthesis to fluctuating PFD, dynamic responses of photosynthesis to sunflecks are not accounted for in current models of canopy carbon uptake, which can lead to substantial overestimates of forest carbon fixation. Since sunflecks are a critical component of seasonal carbon gain for shaded leaves, sunfleck regimes and physiological responses to sunflecks should be incorporated into models to more accurately capture forest carbon dynamics.


Plant Cell and Environment | 2008

Thermal acclimation of photosynthesis in black spruce (Picea mariana (Mill.) B.S.P.)

Danielle A. Way; Rowan F. Sage

We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [Picea mariana (Mill.) B.S.P.] grown at 22/14 degrees C [low temperature (LT)] or 30/22 degrees C [high temperature (HT)] day/night temperatures. Net CO(2) assimilation rates (A(net)) were greater in LT than in HT seedlings below 30 degrees C, but were greater in HT seedlings above 30 degrees C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO(2) assimilation rates (A(gross)) was lower in HT than in LT seedlings below 30 degrees C, but was similar above 30 degrees C. The reduced A(gross) of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates (V(cmax)) and lower maximum electron transport rates (J(max)). Growth treatment did not affect V(cmax) : J(max). Modelling of the CO(2) response of photosynthesis indicated that LT seedlings at 40 degrees C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A(net) was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 degrees C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.


Plant Cell and Environment | 2015

Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield

Menachem Moshelion; Ofer Halperin; Rony Wallach; Ram Oren; Danielle A. Way

The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.


Plant Cell and Environment | 2015

Photoperiod constraints on tree phenology, performance and migration in a warming world

Danielle A. Way; Rebecca A. Montgomery

Increasing temperatures should facilitate the poleward movement of species distributions through a variety of processes, including increasing the growing season length. However, in temperate and boreal latitudes, temperature is not the only cue used by trees to determine seasonality, as changes in photoperiod provide a more consistent, reliable annual signal of seasonality than temperature. Here, we discuss how day length may limit the ability of tree species to respond to climate warming in situ, focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth, as well as the potential role of photoperiod in controlling carbon uptake and water fluxes in forests. We also review whether there are patterns across plant functional types (based on successional strategy, xylem anatomy and leaf morphology) in their sensitivity to photoperiod that we can use to predict which species or groups might be more successful in migrating as the climate warms, or may be more successfully used for forestry and agriculture through assisted migration schemes.


Tree Physiology | 2015

Non-structural carbohydrates in woody plants compared among laboratories

Audrey G. Quentin; Elizabeth A. Pinkard; Michael G. Ryan; David T. Tissue; L. Scott Baggett; Henry D. Adams; Pascale Maillard; Jacqueline Marchand; Simon M. Landhäusser; André Lacointe; Yves Gibon; William R. L. Anderegg; Shinichi Asao; Owen K. Atkin; Marc Bonhomme; Cj Claye; Pak S. Chow; Anne Clément-Vidal; Noel W. Davies; L. Turin Dickman; Rita Dumbur; David S. Ellsworth; Kristen Falk; Lucía Galiano; José M. Grünzweig; Henrik Hartmann; Günter Hoch; Sharon M. Hood; Je Jones; Takayoshi Koike

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.

Collaboration


Dive into the Danielle A. Way's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Turin Dickman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph R. Stinziano

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge