Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cu Nguyen is active.

Publication


Featured researches published by Cu Nguyen.


Proceedings of the National Academy of Sciences of the United States of America | 2004

A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected].

Katayoon H. Emami; Cu Nguyen; Hong Ma; Dae Hoon Kim; Kwang Won Jeong; Masakatsu Eguchi; Randall T. Moon; Jia-Ling Teo; Hak Yeop Kim; Sung Hwan Moon; Ha; Michael Kahn

Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis

William R. Henderson; Emil Y. Chi; Xin Ye; Cu Nguyen; Ying Tzang Tien; Beiyun Zhou; Zea Borok; Darryl A. Knight; Michael Kahn

Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/β-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/β-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the β-catenin/CBP interaction without interfering with the β-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits β-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/β-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis.


Oncogene | 2005

Differential roles for the coactivators CBP and p300 on TCF/β -catenin -mediated survivin gene expression

Hong Ma; Cu Nguyen; Kyung-Soon Lee; Michael Kahn

The inhibitor of apoptosis (IAP) protein survivin is highly expressed in cancers, but not in normal differentiated tissues. TCF/β-catenin signaling has been reported to participate in the regulation of survivin transcription in colon cancer. We have recently characterized ICG-001, a small molecule specific inhibitor of the β-catenin/Creb-binding protein (CBP) interaction. Inhibition of the β-catenin/CBP interaction represses a subset of TCF/β-catenin-mediated transcription. ICG-001 potently inhibits survivin gene transcription and expression. ICG-001-mediated downregulation of survivin expression enhanced caspase-3 activity and apoptosis, which was rescued by overexpression of wild type but not mutant (C84A) survivin. Small interfering RNA and genetic reduction of CBP also decreased survivin expression. Chromatin immunoprecipitation assay confirmed that CBP is the crucial coactivator for TCF/β-catenin-mediated survivin transcription. Furthermore, ICG-001-induced recruitment of p300 to the survivin promoter led to concomitant recruitment of SUMO-1, HDAC6 and PML proteins, which have been associated with transcriptional repression. These findings demonstrate that CBP and p300 play very distinct roles in survivin gene transcription.


Journal of Biological Chemistry | 2012

Interactions Between β-Catenin and Transforming Growth Factor-β Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-activator cAMP-response Element-binding Protein (CREB)-binding Protein (CBP)

Beiyun Zhou; Yixin Liu; Michael Kahn; David K. Ann; Arum Han; Hongjun Wang; Cu Nguyen; Per Flodby; Qian Zhong; Manda S. Krishnaveni; Janice M. Liebler; Parviz Minoo; Edward D. Crandall; Zea Borok

Background: Direct evidence for molecular interdependence between transforming growth factor-β (TGF-β) and Wnt pathways in mesenchymal gene regulation during epithelial-mesenchymal transition (EMT) is limited. Results: TGF-β induction of α-smooth muscle actin (α-SMA) involves ternary complex formation among Smad3, β-catenin, and CBP. Conclusion: TGF-β and β-catenin/CBP-dependent pathways coordinately regulate α-SMA induction. Significance: Inhibition of β-catenin/CBP-dependent effects of TGF-β suggests a novel therapeutic approach to EMT/fibrosis. Interactions between transforming growth factor-β (TGF-β) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated β-catenin-dependent and transforming growth factor-β1 (TGF-β1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the β-catenin/CBP (but not β-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-β1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-β1 induces LEF/TCF TOPFLASH reporter activation and nuclear β-catenin accumulation, while LiCl augments TGF-β-induced α-SMA expression, further confirming co-operation between β-catenin- and TGF-β-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of β-catenin and overexpression of ICAT abrogated effects of TGF-β1 on α-SMA transcription/expression, indicating a requirement for β-catenin in these Smad3-dependent effects. Following TGF-β treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and β-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, β-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-β as well as α-SMA promoter occupancy by β-catenin and CBP, demonstrating a previously unknown requisite TGF-β1/β-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by β-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-β.


Cancer Research | 2009

Preferential Induction of EphB4 over EphB2 and Its Implication in Colorectal Cancer Progression

S. Ram Kumar; Jeffrey S. Scehnet; Eric J. Ley; Jasbir Singh; Valery Krasnoperov; Ren Liu; Parmeet K. Manchanda; Robert D. Ladner; Debra Hawes; Fred A. Weaver; Robert W. Beart; Gagandeep Singh; Cu Nguyen; Michael Kahn; Parkash S. Gill

The receptor tyrosine kinase EphB2 is expressed by colon progenitor cells; however, only 39% of colorectal tumors express EphB2 and expression levels decline with disease progression. Conversely, EphB4 is absent in normal colon but is expressed in all 102 colorectal cancer specimens analyzed, and its expression level correlates with higher tumor stage and grade. Both EphB4 and EphB2 are regulated by the Wnt pathway, the activation of which is critically required for the progression of colorectal cancer. Differential usage of transcriptional coactivator cyclic AMP-responsive element binding protein-binding protein (CBP) over p300 by the Wnt/beta-catenin pathway is known to suppress differentiation and increase proliferation. We show that the beta-catenin-CBP complex induces EphB4 and represses EphB2, in contrast to the beta-catenin-p300 complex. Gain of EphB4 provides survival advantage to tumor cells and resistance to innate tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Knockdown of EphB4 inhibits tumor growth and metastases. Our work is the first to show that EphB4 is preferentially induced in colorectal cancer, in contrast to EphB2, whereby tumor cells acquire a survival advantage.


Proceedings of the National Academy of Sciences of the United States of America | 2004

A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription

Katayoon H. Emami; Cu Nguyen; Hong Ma; Dae Hoon Kim; Kwang Won Jeong; Masakatsu Eguchi; Randall T. Moon; Jia-Ling Teo; Se Wong Oh; Hak Yeop Kim; Sung Hwan Moon; Jong Ryul Ha; Michael Kahn

Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.


Cancer Cell | 2015

Recurrent DGCR8, DROSHA, and SIX Homeodomain Mutations in Favorable Histology Wilms Tumors

Amy L. Walz; Ariadne H. A. G. Ooms; Samantha Gadd; Daniela S. Gerhard; Malcolm A. Smith; Jamie M. GuidryAuvil; Daoud Meerzaman; Qing Rong Chen; Chih Hao Hsu; Chunhua Yan; Cu Nguyen; Ying Hu; Reanne Bowlby; Denise Brooks; Yussanne Ma; Andrew J. Mungall; Richard A. Moore; Jacqueline E. Schein; Marco A. Marra; Vicki Huff; Jeffrey S. Dome; Yueh Yun Chi; Charles G. Mullighan; Jing Ma; David A. Wheeler; Oliver A. Hampton; Nadereh Jafari; Nicole Ross; Julie M. Gastier-Foster; Elizabeth J. Perlman

We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations. Significantly decreased expression of mature Let-7a and the miR-200 family (responsible for mesenchymal-to-epithelial transition) in miRNAPG mutant tumors is associated with an undifferentiated blastemal histology. The combination of SIX and miRNAPG mutations in the same tumor is associated with evidence of RAS activation and a higher rate of relapse and death.


Oncogene | 2014

Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia

Eun Ji Gang; Yao-Te Hsieh; Jennifer Pham; Yi Zhao; Cu Nguyen; Sandra Huantes; Eugene Park; Khatija Naing; Lars Klemm; Srividya Swaminathan; Edward M. Conway; Louis M. Pelus; John D. Crispino; Charles G. Mullighan; Michael McMillan; Markus Müschen; Michael Kahn; Yong-Mi Kim

Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia; however, little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CREB-binding protein (CBP)) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300 leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small-molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using chromatin immunoprecipitation assay, we demonstrate occupancy of the survivin promoter by CBP that is decreased by ICG-001 in primary ALL. CBP mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.


PLOS ONE | 2013

The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium.

Tomoyo Sasaki; Hyosook Hwang; Cu Nguyen; Robert A. Kloner; Michael Kahn

The adult mammalian heart has limited capability for self-repair after myocardial infarction. Therefore, therapeutic strategies that improve post-infarct cardiac function are critically needed. The small molecule ICG-001 modulates Wnt signaling and increased the expression of genes beneficial for cardiac regeneration in epicardial cells. Lineage tracing experiments, demonstrated the importance of β-catenin/p300 mediated transcription for epicardial progenitor contribution to the myocardium. Female rats given ICG-001 for 10 days post-occlusion significantly improved ejection fraction by 8.4%, compared to controls (P<0.05). Taken together, Wnt modulation via β-catenin/CBP inhibition offers a promising therapeutic strategy towards restoration of myocardial tissues and an enhancement of cardiac functions following infarction.


Current Cancer Drug Targets | 2011

The gamma catenin/CBP complex maintains survivin transcription in β-catenin deficient/depleted cancer cells.

Yong Mi Kim; Hong Ma; V. G. Oehler; EunJi Gang; Cu Nguyen; D. Masiello; Honglei Liu; Yi Zhao; Jerald P. Radich; Michael Kahn

Previously, we demonstrated that survivin expression is CBP/β-catenin/TCF-dependent. Now, using NCI-H28 cells, which harbor a homozygous deletion of β-catenin, we demonstrate that survivin transcription can similarly be mediated by nuclear γ-catenin. ICG-001, a specific inhibitor of binding to the N-terminus of CBP, effectively attenuates survivin expression. We demonstrate that γ-catenin by binding to TCF family members and specifically recruiting the coactivator CBP drives survivin transcription particularly in β-catenin-deficient cells. We also examined the relative expression of γ-catenin and β-catenin in 90 cases of chronic myeloid leukemia (CML) in a published gene expression microarray data base. A statistically significant negative correlation between γ-catenin and β-catenin was found in AP/BC cases (-0.389, P = 0.006). Furthermore, in subsequent independent validation studies by qPCR in 28 CP and BC patients increased γ-catenin expression predominated in BC cases and was associated with concomitantly increased survivin expression. Gene expression was 3- and 6-fold greater in BC patients as compared to CP patients, for γ-catenin and survivin, respectively. Consistent with this observation, nuclear γ-catenin accumulation was evident in this population consistent with a potential transcriptional role. Combined treatment with imatinib mesylate (IM) and ICG-001 significantly inhibited colony formation in sorted CD34(+) CML progenitors (survivin(+)/γ-catenin(high)/β-catenin(low)) isolated from one BC and one AP patient resistant to IM. Therefore, we believe that the ability of ICG-001 to block both the CBP/γ-catenin interaction and the CBP/β-catenin interaction may have clinical significance in cancers in which γ-catenin plays a significant transcriptional role.

Collaboration


Dive into the Cu Nguyen's collaboration.

Top Co-Authors

Avatar

Michael Kahn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Daoud Meerzaman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jia-Ling Teo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yi Zhao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chih Hao Hsu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles G. Mullighan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael McMillan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chunhua Yan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge