Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daria Leali is active.

Publication


Featured researches published by Daria Leali.


Journal of Immunology | 2003

Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis

Daria Leali; Patrizia Dell'Era; Helena Stabile; Barbara Sennino; Ann F. Chambers; Antonella Naldini; Silvano Sozzani; Beatrice Nico; Domenico Ribatti; Marco Presta

The cytokine/extracellular matrix protein osteopontin (OPN/Eta-1) is an important component of cellular immunity and inflammation. It also acts as a survival, cell-adhesive, and chemotactic factor for endothelial cells. Here, subtractive suppression hybridization showed that serum-deprived murine aortic endothelial (MAE) cells transfected with the angiogenic fibroblast growth factor-2 (FGF2) overexpress OPN compared with parental cells. This was confirmed by Northern blotting and Western blot analysis of the conditioned media in different clones of endothelial cells overexpressing FGF2 and in endothelial cells treated with the recombinant growth factor. In vivo, FGF2 caused OPN expression in newly formed endothelium of the chick embryo chorioallantoic membrane (CAM) and of murine s.c. Matrigel plug implants. Recombinant OPN (rOPN), the fusion protein GST-OPN, and the deletion mutant GST-ΔRGD-OPN were angiogenic in the CAM assay. Angiogenesis was also triggered by OPN-transfected MAE cells grafted onto the CAM. OPN-driven neovascularization was independent from endothelial αvβ3 integrin engagement and was always paralleled by the appearance of a massive mononuclear cell infiltrate. Accordingly, rOPN, GST-OPN, GST-ΔRGD-OPN, and the conditioned medium of OPN-overexpressing MAE cells were chemotactic for isolated human monocytes. Also, rOPN triggered a proangiogenic phenotype in human monocytes by inducing the expression of the angiogenic cytokines TNF-α and IL-8. OPN-mediated recruitment of proangiogenic monocytes may represent a mechanism of amplification of FGF2-induced neovascularization during inflammation, wound healing, and tumor growth.


Blood | 2010

Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2.

Stefania Mitola; Cosetta Ravelli; Emanuela Moroni; Valentina Salvi; Daria Leali; Kurt Ballmer-Hofer; Luca Zammataro; Marco Presta

The bone morphogenic protein antagonist gremlin is expressed during embryonic development and under different pathologic conditions, including cancer. Gremlin is a proangiogenic protein belonging to the cystine-knot superfamily that includes transforming growth factor-β proteins and the angiogenic vascular endothelial growth factors (VEGFs). Here, we demonstrate that gremlin binds VEGF receptor-2 (VEGFR2), the main transducer of VEGF-mediated angiogenic signals, in a bone morphogenic protein-independent manner. Similar to VEGF-A, gremlin activates VEGFR2 in endothelial cells, leading to VEGFR2-dependent angiogenic responses in vitro and in vivo. Gremlin thus represents a novel proangiogenic VEGFR2 agonist distinct from the VEGF family ligands with implications in vascular development, angiogenesis-dependent diseases, and tumor neovascularization.


Current Pharmaceutical Design | 2003

Heparin derivatives as angiogenesis inhibitors

Marco Presta; Daria Leali; Helena Stabile; Roberto Ronca; Maura Camozzi; L Coco; Emanuela Moroni; Sandra Liekens; Marco Rusnati

Angiogenesis is the process of generating new capillary blood vessels. Uncontrolled endothelial cell proliferation is observed in tumor neovascularization and in angioproliferative diseases. Tumors cannot growth as a mass above few mm(3) unless a new blood supply is induced. It derives that the control of the neovascularization process may affect tumor growth and may represent a novel approach to tumor therapy. Angiogenesis is controlled by a balance between proangiogenic and antiangiogenic factors. The angiogenic switch represents the net result of the activity of angiogenic stimulators and inhibitors, suggesting that counteracting even a single major angiogenic factor could shift the balance towards inhibition. Heparan sulfate proteoglycans are involved in the modulation of the neovascularization that takes place in different physiological and pathological conditions. This modulation occurs through the interaction with angiogenic growth factors or with negative regulators of angiogenesis. Thus, the study of the biochemical bases of this interaction may help to design glycosaminoglycan analogs endowed with angiostatic properties. The purpose of this review is to provide an overview of the structure/function of heparan sulfate proteoglycans in endothelial cells and to summarize the angiostatic properties of synthetic heparin-like compounds, chemically modified heparins, and biotechnological heparins.


Journal of Immunology | 2006

Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes.

Antonella Naldini; Daria Leali; Annalisa Pucci; Emilia Morena; Fabio Carraro; Beatrice Nico; Domenico Ribatti; Marco Presta

Inflammation plays an important role in the onset of angiogenesis. In the present study, we show that osteopontin (OPN), a proinflammatory mediator involved in tissue repair, induces IL-1β up-regulation in human monocytes. This was accompanied by the enhanced production of TNF-α, IL-8, and IL-6, a decreased release of IL-10, and increased p38 phosphorylation. The supernatants of OPN-treated monocytes were highly angiogenic when delivered on the chick embryo chorioallantoic membrane. The angiogenic response was completely abrogated by a neutralizing anti-IL-1 Ab, thus indicating that this cytokine represents the major proangiogenic factor expressed by OPN-activated monocytes. Accordingly, rIL-1β mimicked the proangiogenic activity of OPN-treated monocyte supernatants, and IL-1R (type I) was found to be expressed in the chorioallantoic membrane. In conclusion, OPN-activated monocytes may contribute to the onset of angiogenesis through a mechanism mediated by IL-1β.


European Cytokine Network | 2009

Inflammatory cells and chemokines sustain FGF2-induced angiogenesis

Marco Presta; Germán Andrés; Daria Leali; Patrizia Dell’Era; Roberto Ronca

Angiogenesis and inflammation are closely integrated processes in a number of physiological and pathological conditions, including wound healing, psoriasis, diabetic retinopathy, rheumatoid arthritis, arteriosclerosis, and cancer. Fibroblast growth factor-2 (FGF2) belongs to the family of the heparin-binding FGF growth factors. FGF2 exerts its pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Elevated levels of FGF2 have been implicated in the pathogenesis of several diseases characterized by a deregulated angiogenic/inflammatory response. FGF2 induces the expression of a wide repertoire of inflammation-related genes in endothelial cells, including pro-inflammatory cytokines/chemokines and their receptors, endothelial cell adhesion molecules, and components of the prostaglandin pathway. Consistent with this pro-inflammatory signature, in vivo evidence points to a non-redundant role for chemokines and infiltrating monocytes/macrophages in FGF2-driven neovascularization. This review will focus on the cross-talk between FGF2 and the inflammatory response in the modulation of blood vessel growth.


European Cytokine Network | 2009

Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist

Patrizia Alessi; Daria Leali; Maura Camozzi; AnnaRita Cantelmo; Adriana Albini; Marco Presta

Angiogenesis, the formation of new blood vessels from the endothelium of the existing vasculature, plays a pivotal role in tumor growth, progression and metastasis. Over the last 30 years, numerous pro- and antiangiogenic molecules, their ligands, and intracellular signaling pathways have been identified, and significant efforts have been undertaken to develop antiangiogenic strategies for cancer therapy. Agents that selectively target vascular endothelial growth factor (VEGF) and its receptors have shown promising activity in clinical trials and have been approved for use in selected cancer indications. However, patients may ultimately develop resistance to these drugs. One proposed mechanism of tumor escape from anti-VEGF therapy is the up-regulation of fibroblast growth factor-2 (FGF2). FGF2 is a pleiotropic, angiogenesis inducer belonging to the family of the heparin-binding FGF growth factors. FGF2 is expressed by numerous tumor types and exerts its proangiogenic activity by interacting with tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins expressed on the endothelial cell surface. Experimental evidence suggests that targeting FGF2, in addition to VEGF, might provide synergistic effects in the treatment of angiogenesis-related diseases, including cancer. Several FGF2 inhibitors, with different chemical structure and mechanism of action, have been identified. Recent observations have shown the ability of the soluble pattern recognition receptor long-pentraxin-3 (PTX3) to bind FGF2, thus acting as a FGF2 antagonist. PTX3 binds FGF2 with high affinity and specificity. This interaction prevents the binding of FGF2 to its cognate tyrosine kinase receptors, leading to inhibition of the angiogenic activity of the growth factor. Further, preliminary observations support the hypothesis that PTX3 may inhibit FGF2-mediated tumor angiogenesis and growth. The identification of the FGF2-binding domain in the unique N-terminal extension of PTX3 has allowed the design of PTX3-derived synthetic peptides endowed with significant antiangiogenic activity in vitro and in vivo. These findings may provide the basis for the development of novel antiangiogenic FGF2 antagonists, with potential implications for cancer therapy.


Journal of Cellular and Molecular Medicine | 2009

A pro-inflammatory signature mediates FGF2-induced angiogenesis

Germán Andrés; Daria Leali; Stefania Mitola; Daniela Coltrini; Maura Camozzi; Michela Corsini; Mirella Belleri; Emilio Hirsch; Reto A. Schwendener; Gerhard Christofori; Antonio Alcami; Marco Presta

Fibroblast growth factor‐2 (FGF2) is a potent angiogenic growth factor. Here, gene expression profiling of FGF2‐stimulated microvascular endothelial cells revealed, together with a prominent pro‐angiogenic profile, a pro‐inflammatory signature characterized by the up‐regulation of pro‐inflammatory cytokine/chemokines and their receptors, endothelial cell adhesion molecules and members of the eicosanoid pathway. Real‐time quantitative PCR demonstrated early induction of most of the FGF2‐induced, inflammation‐related genes. Accordingly, chick embryo chorioallantoic membrane (CAM) and murine Matrigel plug angiogenesis assays demonstrated a significant monocyte/macrophage infiltrate in the areas of FGF2‐driven neovascularization. Similar results were obtained when the conditioned medium (CM) of FGF2‐stimulated endothelial cells was delivered onto the CAM, suggesting that FGF2‐upregulated chemoattractants mediate the inflammatory response. Importantly, FGF2‐triggered new blood vessel formation was significantly reduced in phosphatidylinositol 3‐kinase‐γ null mice exhibiting defective leucocyte migration or in clodronate liposome‐treated, macrophage‐depleted mice. Furthermore, the viral pan‐chemokine antagonist M3 inhibited the angiogenic and inflammatory responses induced by the CM of FGF2‐stimulated endothelial cells and impaired FGF2‐driven neovascularization in the CAM assay. These findings point to inflammatory chemokines as early mediators of FGF2‐driven angiogenesis and indicate a non‐redundant role for inflammatory cells in the neovascularization process elicited by the growth factor.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction A Biological Rheostat for Fibroblast Growth Factor 2–Mediated Angiogenesis

Daria Leali; Antonio Inforzato; Roberto Ronca; Roberta Bianchi; Mirella Belleri; Daniela Coltrini; Emanuela Di Salle; Marina Sironi; Giuseppe Danilo Norata; Barbara Bottazzi; Cecilia Garlanda; Anthony J. Day; Marco Presta

Objective— Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand TSG-6, a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results— Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3 -null mice or by TSG-6 treatment in wild-type animals. Conclusion— TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.Objective—Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand tumor necrosis factor-stimulated gene-6 (TSG-6), a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results—Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals. Conclusion—TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.


Journal of Cellular and Molecular Medicine | 2009

Fibroblast growth factor 2-antagonist activity of a long-pentraxin 3-derived anti-angiogenic pentapeptide

Daria Leali; Roberta Bianchi; Antonella Bugatti; Stefania Nicoli; Stefania Mitola; Laura Ragona; Simona Tomaselli; Grazia Gallo; Sergio Catello; Vincenzo Rivieccio; Lucia Zetta; Marco Presta

Fibroblast growth factor‐2 (FGF2) plays a major role in angiogenesis. The pattern recognition receptor long‐pentraxin 3 (PTX3) inhibits the angiogenic activity of FGF2. To identify novel FGF2‐antagonistic peptide(s), four acetylated (Ac) synthetic peptides overlapping the FGF2‐binding region PTX3‐(97–110) were assessed for their FGF2‐binding capacity. Among them, the shortest pentapeptide Ac‐ARPCA‐NH2 (PTX3‐[100–104]) inhibits the interaction of FGF2 with PTX3 immobilized to a BIAcore sensorchip and suppresses FGF2‐dependent proliferation in endothelial cells, without affecting the activity of unrelated mitogens. Also, Ac‐ARPCA‐NH2 inhibits angiogenesis triggered by FGF2 or by tumorigenic FGF2‐overexpressing murine endothelial cells in chick and zebrafish embryos, respectively. Accordingly, the peptide hampers the binding of FGF2 to Chinese Hamster ovary cells overexpressing the tyrosine‐kinase FGF receptor‐1 (FGFR1) and to recombinant FGFR1 immobilized to a BIAcore sensorchip without affecting heparin interaction. In all the assays the mutated Ac‐ARPSA‐NH2 peptide was ineffective. In keeping with the observation that hydrophobic interactions dominate the interface between FGF2 and the FGF‐binding domain of the Ig‐like loop D2 of FGFR1, amino acid substitutions in Ac‐ARPCA‐NH2 and saturation transfer difference‐nuclear magnetic resonance analysis of its mode of interaction with FGF2 implicate the hydrophobic methyl groups of the pentapeptide in FGF2 binding. These results will provide the basis for the design of novel PTX3‐derived anti‐angiogenic FGF2 antagonists.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Antiangiogenic Activity of Semisynthetic Biotechnological Heparins. Low-Molecular-Weight-Sulfated Escherichia coli K5 Polysaccharide Derivatives as Fibroblast Growth Factor Antagonists

Marco Presta; Pasqua Oreste; Giorgio Zoppetti; Mirella Belleri; Elena Tanghetti; Daria Leali; Chiara Urbinati; Antonella Bugatti; Roberto Ronca; Stefania Nicoli; Emanuela Moroni; Helena Stabile; Maura Camozzi; German Andrés Hernandez; Stefania Mitola; Patrizia Dell’Era; Marco Rusnati; Domenico Ribatti

Objective— Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Methods and Results— Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and αvβ3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/αvβ3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. Conclusions— LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/αvβ3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.

Collaboration


Dive into the Daria Leali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge