Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuela Di Salle is active.

Publication


Featured researches published by Emanuela Di Salle.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction A Biological Rheostat for Fibroblast Growth Factor 2–Mediated Angiogenesis

Daria Leali; Antonio Inforzato; Roberto Ronca; Roberta Bianchi; Mirella Belleri; Daniela Coltrini; Emanuela Di Salle; Marina Sironi; Giuseppe Danilo Norata; Barbara Bottazzi; Cecilia Garlanda; Anthony J. Day; Marco Presta

Objective— Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand TSG-6, a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results— Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3 -null mice or by TSG-6 treatment in wild-type animals. Conclusion— TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.Objective—Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand tumor necrosis factor-stimulated gene-6 (TSG-6), a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results—Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals. Conclusion—TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.


Cancer Cell | 2015

Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy

Roberto Ronca; Arianna Giacomini; Emanuela Di Salle; Daniela Coltrini; Katiuscia Pagano; Laura Ragona; Sara Matarazzo; Sara Rezzola; Daniele Maiolo; Rubben Torella; Elisabetta Moroni; Roberta Mazzieri; Giulia Escobar; Marco Mor; Giorgio Colombo; Marco Presta

The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction

Daria Leali; Antonio Inforzato; Roberto Ronca; Roberta Bianchi; Mirella Belleri; Daniela Coltrini; Emanuela Di Salle; Marina Sironi; Giuseppe Danilo Norata; Barbara Bottazzi; Cecilia Garlanda; Anthony J. Day; Marco Presta

Objective— Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand TSG-6, a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results— Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3 -null mice or by TSG-6 treatment in wild-type animals. Conclusion— TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.Objective—Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand tumor necrosis factor-stimulated gene-6 (TSG-6), a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results—Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals. Conclusion—TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.


The Journal of Pathology | 2013

Long pentraxin-3 as an epithelial–stromal fibroblast growth factor-targeting inhibitor in prostate cancer

Roberto Ronca; Patrizia Alessi; Daniela Coltrini; Emanuela Di Salle; Arianna Giacomini; Daria Leali; Michela Corsini; Mirella Belleri; Chiara Tobia; Cecilia Garlanda; Elisa Bonomi; Regina Tardanico; William Vermi; Marco Presta

Fibroblast growth factors (FGFs) exert autocrine/paracrine functions in prostate cancer by stimulating angiogenesis and tumour growth. Here dihydrotestosterone (DHT) up‐regulates FGF2 and FGF8b production in murine TRAMP‐C2 prostate cancer cells, activating a FGF‐dependent autocrine loop of stimulation. The soluble pattern recognition receptor long pentraxin‐3 (PTX3) acts as a natural FGF antagonist that binds FGF2 and FGF8b via its N‐terminal domain. We demonstrate that recombinant PTX3 protein and the PTX3‐derived pentapeptide Ac‐ARPCA‐NH2 abolish the mitogenic response of murine TRAMP‐C2 cells and human LNCaP prostate cancer cells to DHT and FGFs. Also, PTX3 hampers the angiogenic activity of DHT‐activated TRAMP‐C2 cells on the chick embryo chorioallantoic membrane (CAM). Accordingly, human PTX3 overexpression inhibits the mitogenic activity exerted by DHT or FGFs on hPTX3_TRAMP‐C2 cell transfectants and their angiogenic activity. Also, hPTX3_TRAMP‐C2 cells show a dramatic decrease of their angiogenic and tumourigenic potential when grafted in syngeneic or immunodeficient athymic male mice. A similar inhibitory effect is observed when TRAMP‐C2 cells overexpress only the FGF‐binding N‐terminal PTX3 domain. In keeping with the anti‐tumour activity of PTX3 in experimental prostate cancer, immunohistochemical analysis of prostate needle biopsies from primary prostate adenocarcinoma patients shows that parenchymal PTX3 expression, abundant in basal cells of normal glands, is lost in high‐grade prostatic intraepithelial neoplasia and in invasive tumour areas. These results identify PTX3 as a potent FGF antagonist endowed with anti‐angiogenic and anti‐neoplastic activity in prostate cancer. Copyright


Molecular Cancer Therapeutics | 2013

Long Pentraxin-3 Inhibits Epithelial–Mesenchymal Transition in Melanoma Cells

Roberto Ronca; Emanuela Di Salle; Arianna Giacomini; Daria Leali; Patrizia Alessi; Daniela Coltrini; Cosetta Ravelli; Sara Matarazzo; Domenico Ribatti; William Vermi; Marco Presta

During melanoma progression, malignant melanocytes are reprogrammed into mesenchymal-like cells through to an epithelial–mesenchymal transition (EMT) process associated with the acquisition of an invasive, prometastatic phenotype. The fibroblast growth factor-2 (FGF2)/FGF receptor (FGFR) system plays a pivotal role in melanoma, leading to autocrine/paracrine induction of tumor cell proliferation and angiogenesis. Long pentraxin-3 (PTX3) interacts with FGF2, and other FGF family members, inhibiting FGF-dependent neovascularization and tumor growth. Here, PTX3 protein and the PTX3-derived acetylated pentapeptide Ac-ARPCA-NH2 inhibit FGF2-driven proliferation and downstream FGFR signaling in murine melanoma B16-F10 cells. Moreover, human PTX3-overexpressing hPTX_B16-F10 cells are characterized by the reversed transition from a mesenchymal to an epithelial-like appearance, inhibition of cell proliferation, loss of clonogenic potential, reduced motility and invasive capacity, downregulation of various mesenchymal markers, and upregulation of the epithelial marker E-cadherin. Accordingly, PTX3 affects cell proliferation and EMT transition in human A375 and A2058 melanoma cells. Also, hPTX_B16-F10 cells showed a reduced tumorigenic and metastatic activity in syngeneic C57BL/6 mice. In conclusion, PTX3 inhibits FGF/FGFR-driven EMT in melanoma cells, hampering their tumorigenic and metastatic potential. These data represent the first experimental evidence about a nonredundant role of the FGF/FGFR system in the modulation of the EMT process in melanoma and indicate that PTX3 or its derivatives may represent the basis for the design of novel therapeutic approaches in FGF/FGFR-dependent tumors, including melanoma. Mol Cancer Ther; 12(12); 2760–71. ©2013 AACR.


Angiogenesis | 2013

Matrigel plug assay: evaluation of the angiogenic response by reverse transcription-quantitative PCR.

Daniela Coltrini; Emanuela Di Salle; Roberto Ronca; Mirella Belleri; Chiara Testini; Marco Presta

The subcutaneous Matrigel plug assay in mice is a method of choice for the in vivo evaluation of pro- and anti-angiogenic molecules. However, quantification of the angiogenic response in the plug remains a problematic task. Here we report a simple, rapid, unbiased and reverse transcription-quantitative PCR (RT-qPCR) method to investigate the angiogenic process occurring in the Matrigel plug in response to fibroblast growth factor-2 (FGF2). To this purpose, a fixed amount of human cells were added to harvested plugs at the end of the in vivo experimentation as an external cell tracer. Then, mRNA levels of the pan-endothelial cell markers murine CD31 and vascular endothelial-cadherin were measured by species-specific RT-qPCR analysis of the total RNA and data were normalized for human GAPDH or β-actin mRNA levels. RT-qPCR was used also to measure the levels of expression in the plug of various angiogenesis/inflammation-related genes. The procedure allows the simultaneous, quantitative evaluation of the newly-formed endothelium and of non-endothelial/inflammatory components of the cellular infiltrate in the Matrigel implant, as well as the expression of genes involved in the modulation of the angiogenesis process. Also, the method consents the quantitative assessment of the effect of local or systemic administration of anti-angiogenic compounds on the neovascular response triggered by FGF2.


Biochimica et Biophysica Acta | 2014

Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease

Daniela Zizioli; Michela Guarienti; Chiara Tobia; Giuseppina Gariano; Giuseppe Borsani; Roberto Bresciani; Roberto Ronca; Edoardo Giacopuzzi; Augusto Preti; Germano Gaudenzi; Mirella Belleri; Emanuela Di Salle; Gemma Fabriàs; Josefina Casas; Domenico Ribatti; Eugenio Monti; Marco Presta

The lysosomal hydrolase galactocerebrosidase (GALC) catalyzes the removal of galactose from galactosylceramide and from other sphingolipids. GALC deficiency is responsible for globoid cell leukodystrophy (GLD), or Krabbes disease, an early lethal inherited neurodegenerative disorder characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system (CNS). The poor outcome of current clinical treatments calls for novel model systems to investigate the biological impact of GALC down-regulation and for the search of novel therapeutic strategies in GLD. Zebrafish (Danio rerio) represents an attractive vertebrate model for human diseases. Here, lysosomal GALC activity was demonstrated in the brain of zebrafish adults and embryos. Accordingly, we identified two GALC co-orthologs (named galca and galcb) dynamically co-expressed in CNS during zebrafish development. Both genes encode for lysosomal enzymes endowed with GALC activity. Single down-regulation of galca or galcb by specific antisense morpholino oligonucleotides results in a partial decrease of GALC activity in zebrafish embryos that was abrogated in double galca/galcb morphants. However, no psychosine accumulation was observed in galca/galcb double morphants. Nevertheless, double galca/galcb knockdown caused reduction and partial disorganization of the expression of the early neuronal marker neuroD and an increase of apoptotic events during CNS development. These observations provide new insights into the pathogenesis of GLD, indicating that GALC loss-of-function may have pathological consequences in developing CNS independent of psychosine accumulation. Also, they underscore the potentiality of the zebrafish system in studying the pathogenesis of lysosomal neurodegenerative diseases, including GLD.


Cancer Research | 2014

Abstract 178: Stromal expression of long Pentraxin-3 impairs tumor growth and metastasis

Arianna Giacomini; Emanuela Di Salle; Daniela Coltrini; Mirella Belleri; Marco Presta; Roberto Ronca

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Long Pentraxin-3 (PTX3) is a soluble pattern recognition receptor expressed by endothelial and immune cells in inflammatory contexts. We have previously demonstrated that PTX3 binds to different members of the FGF family, thus inhibiting their biological activity. The FGF/FGFR system strongly contributes to cancer progression by inducing tumor growth and neovascularization. To date, recombinant PTX3 protein or PTX3-overexpressing tumor cell lines have been exploited to assess the antitumor effects of this natural FGF trap. Here we generated C57BL/6 transgenic mice expressing human (h)PTX3 under the control of the endothelial specific Tie2/Tek transcription regulatory sequences. These animals were used to investigate the impact of PTX3 overexpression by the host stroma on tumor growth, vascularization and metastasis. Transgenic Tie2-hPTX3 mice were generated by cloning the hPTX3 cDNA into the late-generation, self-inactivating lentiviral vector Tie2p/e to obtain the Tie2-hPTX3 lentiviral transfer vectors that were injected into fertilized oocytes. Expression of the transgene was confirmed by RT-PCR and western blot analyses of different organs from Tie2-hPTX3 mice that showed increased levels of circulating PTX3 (80-180 ng/ml) when compared to wild type (wt) animals (<1.8 ng/ml). Also, histological analysis confirmed the perivascular accumulation of hPTX3 in transgenic animals. To assess the anti-angiogenic activity of endothelium-derived hPTX3, we performed ex vivo aorta ring and in vivo matrigel plug assays. Both assays revealed a significant inhibition of FGF2-driven angiogenesis in Tie2-hPTX3 mice that maintained their responsiveness to VEGF-A, thus confirming the specificity of the effect. Next, different syngeneic FGF-dependent tumor cell lines, including TRAMP-C2 prostate carcinoma, B16-F10 melanoma and Lewis Lung carcinoma cells, were subcutaneously injected in Tie2-hPTX3 mice. Notably, the growth of all tumor grafts was significantly reduced in Tie2-hPTX3 mice when compared to wt animals. Also, histological analysis of TRAMP-C2 tumors grown in Tie2-hPTX3 mice showed a strong perivascular expression of hPTX3 and a significant reduction of FGFR1 phosphorylation. This was paralleled by a significant decrease of tumor vascularity and tumor cell proliferation whereas no difference in tumor growth was observed for TRAMP-C2 grafts expressing a constitutively activated form of FGFR1. Finally, B16-F10 melanoma and M5076 ovarian sarcoma cells showed a dramatic decrease of their capacity to form experimental metastases in the lung and liver, respectively, after intravenous injection in Tie2-hPTX3 mice. PTX3 is a natural FGF ligand trap. Our findings demonstrate for the first time that the production of PTX3 by the host stroma may exert a dramatic impact on tumor growth, vascularization and metastasis with potential exploitation for the therapy of FGF-dependent tumors. Citation Format: Arianna Giacomini, Emanuela Di Salle, Daniela Coltrini, Mirella Belleri, Marco Presta, Roberto Ronca. Stromal expression of long Pentraxin-3 impairs tumor growth and metastasis. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 178. doi:10.1158/1538-7445.AM2014-178


Italian journal of anatomy and embryology | 2013

Matrigel plug assay: evaluation of the angiogenic response by reverse transcription-quantitative PCR

Daniela Coltrini; Emanuela Di Salle; Roberto Ronca; Mirella Belleri; Chiara Testini; Marco Presta

The subcutaneous Matrigel plug assay in mice is a method of choice for the in vivo evaluation of pro- and anti-angiogenic molecules. However, quantification of the angiogenic response in the plug remains a problematic task. Here we report a simple, rapid, unbiased and reverse transcription-quantitative PCR (RT-qPCR) method to investigate the angiogenic process occurring in the Matrigel plug in response to fibroblast growth factor-2 (FGF2). To this purpose, a fixed amount of human cells were added to harvested plugs at the end of the in vivo experimentation as an external cell tracer. Then, mRNA levels of the pan endothelial cell markers murine CD31 and vascular endothelial-cadherin were measured by species-specific RT-qPCR analysis of the total RNA and data were normalized for human GAPDH or β-actin mRNA levels. RT-qPCR was used also to measure the levels of expression in the plug of various angiogenesis/inflammationrelated genes. The procedure allows the simultaneous, quantitative evaluation of the newly-formed endothelium and of non endothelial/inflammatory components of the cellular infiltrate in the Matrigel implant, as well as the expression of genes involved in the modulation of the angiogenesis process. Also, the method consents the quantitative assessment of the effect of local or systemic administration of anti-angiogenic compounds on the neovascular response triggered by FGF2.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Long Pentraxin 3/TSG-6 Interaction A Biological Rheostat for Fibroblast Growth Factor 2–Mediated Angiogenesis

Daria Leali; Antonio Inforzato; Roberto Ronca; Roberta Bianchi; Mirella Belleri; Daniela Coltrini; Emanuela Di Salle; Marina Sironi; Giuseppe Danilo Norata; Barbara Bottazzi; Cecilia Garlanda; Anthony J. Day; Marco Presta

Objective— Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand TSG-6, a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results— Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3 -null mice or by TSG-6 treatment in wild-type animals. Conclusion— TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.Objective—Angiogenesis is regulated by the balance between pro- and antiangiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor 2 (FGF2) is a major proangiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally coexpressed with its ligand tumor necrosis factor-stimulated gene-6 (TSG-6), a secreted glycoprotein that cooperates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis. Methods and Results—Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine subcutaneous Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals. Conclusion—TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the coexpression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.

Collaboration


Dive into the Emanuela Di Salle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia Garlanda

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Bottazzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge