Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magdalena Szuplewska is active.

Publication


Featured researches published by Magdalena Szuplewska.


Fems Microbiology Letters | 2012

Mobilizable narrow host range plasmids as natural suicide vectors enabling horizontal gene transfer among distantly related bacterial species

Maria Smorawinska; Magdalena Szuplewska; Piotr Zaleski; Paweł Wawrzyniak; Anna Maj; Andrzej Plucienniczak; Dariusz Bartosik

Klebsiella pneumoniae 287-w carries three small narrow host range (NHR) plasmids (pIGMS31, pIGMS32, and pIGRK), which could be maintained in several closely related species of Gammaproteobacteria, but not in Alphaproteobacteria. The plasmids contain different mobilization systems (MOB), whose activity in Escherichia coli was demonstrated in the presence of the helper transfer system originating from plasmid RK2. The MOBs of pIGMS31 and pIGMS32 are highly conserved in many bacterial plasmids (members of the MOB family), while the predicted MOB of pIGRK has a unique structure, encoding a protein similar to phage-related integrases. The MOBs of pIGMS31 and pIGMS32 enabled the transfer of heterologous replicons from E. coli into both gammaproteobacterial and alphaproteobacterial hosts, which suggests that these NHR plasmids contain broad host range MOB systems. Such plasmids therefore represent efficient carrier molecules, which may act as natural suicide vectors promoting the spread of diverse genetic information (including other types of mobile elements, e.g. resistance transposons) among evolutionarily distinct bacterial species. Thus, mobilizable NHR plasmids may play a much more important role in horizontal gene transfer than previously thought.


Journal of Microbiological Methods | 2011

DIY series of genetic cassettes useful in construction of versatile vectors specific for Alphaproteobacteria

Lukasz Dziewit; Marcin Adamczuk; Magdalena Szuplewska; Dariusz Bartosik

We have developed a DIY (Do It Yourself) series of genetic cassettes, which facilitate construction of novel versatile vectors for Alphaproteobacteria. All the cassettes are based on defined genetic modules derived from three natural plasmids of Paracoccus aminophilus JCM 7686. We have constructed over 50 DIY cassettes, which differ in structure and specific features. All of them are functional in eight strains representing three orders of Alphaproteobacteria: Rhodobacterales, Rhizobiales and Caulobacterales. Besides various replication and stabilization systems, many of the cassettes also contain selective markers appropriate for Alphaproteobacteria (40 cassettes) and genetic modules responsible for mobilization for conjugal transfer (24 cassettes). All the DIY cassettes are bordered by different types of polylinkers, which facilitate vector construction. Using these DIY cassettes, we have created a set of compatible Escherichia coli-Alphaproteobacteria mobilizable shuttle vectors (high or low copy number in E. coli), which will greatly assist the genetic manipulation of Alphaproteobacteria.


BMC Microbiology | 2013

Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA

Lukasz Dziewit; Adam Pyzik; Renata Matlakowska; Jadwiga Baj; Magdalena Szuplewska; Dariusz Bartosik

BackgroundHalomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions.ResultsThe analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family.ConclusionsThis study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria.


PLOS ONE | 2014

Mobility and Generation of Mosaic Non-Autonomous Transposons by Tn3-Derived Inverted-Repeat Miniature Elements (TIMEs)

Magdalena Szuplewska; Marta Ludwiczak; Katarzyna Lyzwa; Jakub Czarnecki; Dariusz Bartosik

Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.


PLOS ONE | 2012

Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria).

Lukasz Dziewit; Jadwiga Baj; Magdalena Szuplewska; Anna Maj; Mateusz Tabin; Anna Czyzkowska; Grazyna Skrzypczyk; Marcin Adamczuk; Tomasz Sitarek; Piotr Stawiński; Agnieszka Tudek; Katarzyna Wanasz; Ewa Wardal; Ewa Piechucka; Dariusz Bartosik

Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.


Mobile genetic elements | 2014

Autonomous and non-autonomous Tn3-family transposons and their role in the evolution of mobile genetic elements

Magdalena Szuplewska; Jakub Czarnecki; Dariusz Bartosik

The Tn3 family of transposons includes diverse elements that encode homologous transposases and contain conserved terminal inverted repeat sequences (IRs). The recent identification of non-autonomous elements, named TIMEs (Tn3-derived Inverted-repeat Miniature Elements), has shed new light on the diversity and evolution of this transposon family. A common feature of TIMEs and other members of this family is their ability to mobilize genomic DNA for transposition as part of composite transposons. These elements significantly influence the structure and properties of plasmids and other mobile genetic elements (MGEs). They may contain and move by transposition (i) plasmid replication systems, (ii) toxin-antitoxin systems and (iii) site-specific recombination modules that can resolve plasmid multimers. Some Tn3 family elements may also transfer large segments of chromosomal DNA into plasmids, which increases the pool of mobile DNA that can take part in horizontal gene transfer.


International Journal of Food Microbiology | 2016

Characterization of nonpathogenic Listeria species isolated from food and food processing environment

Dorota Korsak; Magdalena Szuplewska

A total of 127 Listeria isolates from food and food processing environments, including 75 L. innocua, 49 L. welshimeri, 2 L. seeligeri and 1L. grayi were tested for susceptibility to eight antimicrobials, benzalkonium chloride (BC), cadmium and arsenic. The isolates were also screened for the presence of extrachromosomal genetic elements - plasmids, and their restriction pattern types were determined. All strains were susceptible to ampicillin, ciprofloxacin, erythromycin, gentamicin, rifampicin, trimethoprim and vancomycin. Two of the L. innocua isolates showed resistance to tetracycline and minocycline. The resistance was determined by the presence of chromosomal localization of tet(M) gene, which was not integrated in the transposon Tn916-Tn1545 family. Of analyzed isolates, 18.11% and 55.91% isolates were resistant to BC and cadmium, respectively, but all were susceptible to arsenic. Resistance to BC was correlated with resistance to cadmium - all BC resistant isolates were also resistant to cadmium. On the other hand, 67.61% of cadmium-resistant isolates were susceptible to BC, suggesting that cadmium and BC resistance were not always concurrent in Listeria species. 48.03% of isolates contained plasmids. The size of most of the identified replicons was in the range of 50-90kb. All plasmids were classified into 12 groups with identical restriction pattern (I-XII). Interestingly, plasmids belonging to the same group were determined in isolates of the same species. Only in one case, plasmids with I-type profile were identified in L. innocua and L. welshimeri. There was an association between resistance to BC and plasmid DNA presence: all resistant isolates carried a plasmid. A correlation between resistance to cadmium and plasmid carriage was also observed in L. innocua and L. seeligeri isolates, but among resistant L. welshimeri, 23.08% of isolates did not have plasmids. This may suggest that resistance is associated with determinants located within the chromosome. To elucidate the adaptation strategies and ecology of Listeria spp., it is important to have a better understanding of its resistance to antimicrobials and environmental toxicants such as heavy metals and disinfectants.


International Journal of Food Microbiology | 2018

Prevalence of plasmid-borne benzalkonium chloride resistance cassette bcrABC and cadmium resistance cadA genes in nonpathogenic Listeria spp. isolated from food and food-processing environments

Dorota Korsak; Cora Chmielowska; Magdalena Szuplewska; Dariusz Bartosik

The sixty-seven nonpathogenic Listeria spp. strains isolated from food and food processing environments in Poland were examined for the presence of benzalkonium chloride (BC) resistance cassette (bcrABC) and four different variants of cadmium resistance determinants (cadA1-cadA4). All the strains were phenotypically resistant to cadmium and 22 among them were also resistant to BC. PCR-based analysis revealed that bcrABC cassette was harbored by 95.5% of the strains phenotypically resistant to BC. All of them harbored also either cadA1 or cadA2 genes (none carried cadA3 or cadA4), which corresponded to the presence of plasmids with two restriction patterns. The strains resistant to cadmium but susceptible to BC harbored only the cadA1 gene variant. DNA-DNA hybridization analysis showed that all the identified bcrABC, cadA1 and cadA2 genes were located within plasmids, classified into 11 groups of RFLP profiles. Only one of the plasmids - pLIS1 of Listeria welshimeri (carrying bcrABC and cadA2) - was capable of efficient conjugal transfer from nonpathogenic Listeria isolates to a pathogenic Listeria monocytogenes strain. Analysis of the complete nucleotide sequence of pLIS1 (the first sequenced plasmid of L. welshimeri species) revealed the presence of genes involved in plasmid replication, stabilization and transfer as well as genes conferring resistance phenotypes. Comparative analysis showed that pLIS1 genome is highly similar to a group of plasmids originating from L. monocytogenes strains. A common feature of pLIS1 and its relatives, besides the presence of the resistance genes, is the presence of numerous transposable elements (TEs). The analysis revealed the important role of TEs in both promoting genetic rearrangements within Listeria spp. plasmids and the acquisition of resistance determinants.


Frontiers in Microbiology | 2018

Genome Structure of the Opportunistic Pathogen Paracoccus yeei (Alphaproteobacteria) and Identification of Putative Virulence Factors

Robert Lasek; Magdalena Szuplewska; Monika Mitura; Przemyslaw Decewicz; Cora Chmielowska; Aleksandra Pawłot; Dorota Sentkowska; Jakub Czarnecki; Dariusz Bartosik

Bacteria of the genus Paracoccus are common components of the microbiomes of many naturally- and anthropogenically shaped environments. One species, Paracoccus yeei, is unique within the genus because it is associated with opportunistic human infections. Therefore, strains of P. yeei may serve as an interesting model to study the transition from a saprophytic to a pathogenic lifestyle in environmental bacteria. Unfortunately, knowledge concerning the biology, genetics and genomic content of P. yeei is fragmentary; also the mechanisms of pathogenicity of this bacterium remain unclear. In this study we provide the first insight into the genome composition and metabolic potential of a clinical isolate, P. yeei CCUG 32053. This strain has a multipartite genome (4,632,079 bp) composed of a circular chromosome plus eight extrachromosomal replicons pYEE1–8: 3 chromids and 5 plasmids, with a total size of 1,247,173 bp. The genome has been significantly shaped by the acquisition of genomic islands, prophages (Myoviridae and Siphoviridae phage families) and numerous insertion sequences (ISs) representing seven IS families. Detailed comparative analysis with other complete genomic sequences of Paracoccus spp. (including P. yeei FDAARGOS_252 and TT13, as well as non-pathogenic strains of other species in this genus) enabled us to identify P. yeei species-specific genes and to predict putative determinants of virulence. This is the first attempt to identify pathoadaptive genetic information of P. yeei and to estimate the role of the mobilome in the evolution of pathogenicity in this species.


Fems Microbiology Letters | 2009

Identification of a mosaic transposable element of Paracoccus marcusii composed of insertion sequence ISPmar4 (ISAs1 family) and an IS1247a-driven transposable module (TMo)

Magdalena Szuplewska; Dariusz Bartosik

Collaboration


Dive into the Magdalena Szuplewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Maj

University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge