Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Minton is active.

Publication


Featured researches published by David A. Minton.


Nature | 2012

An Archaean heavy bombardment from a destabilized extension of the asteroid belt

William F. Bottke; David Vokrouhlický; David A. Minton; David Nesvorný; Alessandro Morbidelli; Ramon Brasser; Bruce M. Simonson; Harold F. Levison

The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events. At least seven spherule beds have been found that formed between 3.23 and 3.47 Gyr ago, four between 2.49 and 2.63 Gyr ago, and one between 1.7 and 2.1 Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1 Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7 Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7 Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.


Nature | 2009

A record of planet migration in the Main Asteroid Belt

David A. Minton; Renu Malhotra

The main asteroid belt lies between the orbits of Mars and Jupiter, but the region is not uniformly filled with asteroids. There are gaps, known as the Kirkwood gaps, in distinct locations that are associated with orbital resonances with the giant planets; asteroids placed in these locations will follow chaotic orbits and be removed. Here we show that the observed distribution of main belt asteroids does not fill uniformly even those regions that are dynamically stable over the age of the Solar System. We find a pattern of excess depletion of asteroids, particularly just outward of the Kirkwood gaps associated with the 5:2, the 7:3 and the 2:1 Jovian resonances. These features are not accounted for by planetary perturbations in the current structure of the Solar System, but are consistent with dynamical ejection of asteroids by the sweeping of gravitational resonances during the migration of Jupiter and Saturn ∼4 Gyr ago.


Icarus | 2010

Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System

David A. Minton; Renu Malhotra

Abstract The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters D ≳ 10 km in the current asteroid belt. In a numerical analysis of the long-term evolution of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at t ≈ 1 Myr persists with little deviation to at least t = 4 Gyr . Our study indicates that the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion—having lost as much as ∼50% of the large asteroids—since 1 Myr after the establishment of the current dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10–200 Myr as in 0.2–4 Gyr, roughly ∼30% of the current number of large asteroids in the main belt over each interval. We find that asteroids escaping from the main belt due to dynamical chaos have an Earth-impact probability of ∼0.3%. Our model suggests that the rate of impacts from large asteroids has declined by a factor of 3 over the last 3 Gyr, and that the present-day impact flux of D > 10 km objects on the terrestrial planets is roughly an order of magnitude less than estimates currently in use in crater chronologies and impact hazard risk assessments.


Nature | 2015

Impact jetting as the origin of chondrules

Brandon C. Johnson; David A. Minton; H. J. Melosh; Maria T. Zuber

Chondrules are the millimetre-scale, previously molten, spherules found in most meteorites. Before chondrules formed, large differentiating planetesimals had already accreted. Volatile-rich olivine reveals that chondrules formed in extremely solid-rich environments, more like impact plumes than the solar nebula. The unique chondrules in CB chondrites probably formed in a vapour-melt plume produced by a hypervelocity impact with an impact velocity greater than 10 kilometres per second. An acceptable formation model for the overwhelming majority of chondrules, however, has not been established. Here we report that impacts can produce enough chondrules during the first five million years of planetary accretion to explain their observed abundance. Building on a previous study of impact jetting, we simulate protoplanetary impacts, finding that material is melted and ejected at high speed when the impact velocity exceeds 2.5 kilometres per second. Using a Monte Carlo accretion code, we estimate the location, timing, sizes, and velocities of chondrule-forming impacts. Ejecta size estimates indicate that jetted melt will form millimetre-scale droplets. Our radiative transfer models show that these droplets experience the expected cooling rates of ten to a thousand kelvin per hour,. An impact origin for chondrules implies that meteorites are a byproduct of planet formation rather than leftover building material.


The Astrophysical Journal | 2011

Secular resonance sweeping of the main asteroid belt during planet migration

David A. Minton; Renu Malhotra

We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroids initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturns migration speed of ~0.15 AU Myr–1 during the era that the ν6 resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturns current eccentricity and scales with the square of its eccentricity; the limit on Saturns migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H ≤ 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of ~0.05) linked with Saturns migration speed ~4 AU Myr–1 or a dynamically hot state (single-peaked eccentricity distribution with mean of ~0.3) linked with Saturns migration speed ~0.8 AU Myr–1.


The Astrophysical Journal | 2007

Assessing the Massive Young Sun Hypothesis to Solve the Warm Young Earth Puzzle

David A. Minton; Renu Malhotra

A moderately massive young Sun has been proposed to resolve the so-called faint young Sun paradox. We calculate the time evolution of the solar mass that would be required by this hypothesis using a simple parameterized energy-balance model for Earths climate. Our calculations show that the solar mass-loss rate would need to have been 2-3 orders of magnitude higher than at present for a time on the order of ~2 Gyr. Such a mass-loss history is significantly at variance (both in the timescale and in the magnitude of the mass-loss rates) with that inferred from astronomical observations of mass loss in younger solar analogs. While suggestive, the astronomical data cannot completely rule out the possibility that the Sun had the required mass-loss history; therefore, we also examine the effects of the hypothetical historical solar mass loss on orbital dynamics in the solar system, with a view to identifying additional tests of the hypothesis. We find that ratios of planetary orbital spacings remain unchanged, relative locations of planetary mean motion and secular resonances remain unchanged, but resonance widths and the sizes of the Hill spheres of all planets increase as the Sun loses mass. The populations and dynamics of objects near resonances with the planets, as well as those of distant irregular satellites of the giant planets, may contain the signature of a more massive young Sun. Planetary and satellite orbits provide a few tests, but these are weak or non-unique.


arXiv: Earth and Planetary Astrophysics | 2015

The Dynamical Evolution of the Asteroid Belt

Alessandro Morbidelli; Kevin J. Walsh; David A. Minton; William F. Bottke

The asteroid belt is the leftover of the original planetesimal population in the inner solar system. However, currently the asteroids have orbits with all possible values of eccentricities and inclinations compatible with long-term dynamical stability, whereas the initial planetesimal orbits should have been quasi-circular and almost co-planar. The total mass in the asteroid population is a small fraction of that existing primordially. Also, asteroids with different chemical/mineralogical properties are not ranked in an orderly manner with mean heliocentric distance as one could expect from the existence of a radial gradient of the temperature in the proto-planetary disk, but they are partially mixed. These properties show that the asteroid belt has been severely sculpted by one or a series of processes during its lifetime. This paper reviews the processes that have been proposed so far, discussing the properties that they explain and the problems that they are confronted with. Emphasis is paid to the interplay between the dynamical and the collisional evolution of the asteroid population, which allows the use of the size distribution to constrain the dynamical models. We divide the asteroid belt evolution into three phases. The first phase started during the lifetime of the gaseous proto-planetary disk, when the giant planets formed and presumably experienced large-scale migrations, and continued after the removal of the gas, during the build-up of the terrestrial planets. The second phase occurred after the removal of the gaseous proto-planetary disk and it became particularly lively for the asteroid belt when the giant planets suddenly changed their orbits, as a result of a mutual dynamical instability and the interaction with the trans-Neptunian planetesimal disk. The third phase covers the aftermath of the giant planet instability, until today.


Icarus | 2017

An analytical model of crater count equilibrium

Masatoshi Hirabayashi; David A. Minton; Caleb I. Fassett

Abstract Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.


Science Advances | 2016

Timing of the formation and migration of giant planets as constrained by CB chondrites

Brandon C. Johnson; Kevin J. Walsh; David A. Minton; Alexander N. Krot; Harold F. Levison

Early dynamical excitement by giant planets leads to the formation of the unique CB chondrite meteorites. The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.


Journal of Geophysical Research | 2018

The Role of Breccia Lenses in Regolith Generation From the Formation of Small, Simple Craters: Application to the Apollo 15 Landing Site

Masatoshi Hirabayashi; B. A. Howl; Caleb I. Fassett; Jason M. Soderblom; David A. Minton; H. J. Melosh

Impact cratering is likely a primary agent of regolith generation on airless bodies. Regolith production via impact cratering has long been a key topic of study since the Apollo era. The evolution of regolith due to impact cratering, however, is not well understood. A better formulation is needed to help quantify the formation mechanism and timescale of regolith evolution. Here, we propose an analytically derived stochastic model that describes the evolution of regolith generated by small, simple craters. We account for ejecta blanketing as well as regolith infilling of the transient crater cavity. Our results show that the regolith infilling plays a key role in producing regolith. Our model demonstrates that, because of the stochastic nature of impact cratering, the regolith thickness varies laterally, which is consistent with earlier work. We apply this analytical model to the regolith evolution at the Apollo 15 site. The regolith thickness is computed considering the observed crater size-frequency distribution of small, simple lunar craters (< 381 m in radius for ejecta blanketing and < 100 m in radius for the regolith infilling). Allowing for some amount of regolith coming from the outside of the area, our result is consistent with an empirical result from the Apollo 15 seismic experiment. Finally, we find that the timescale of regolith growth is longer than that of crater equilibrium, implying that even if crater equilibrium is observed on a cratered surface, it is likely the regolith thickness is still evolving due to additional impact craters.

Collaboration


Dive into the David A. Minton's collaboration.

Top Co-Authors

Avatar

Caleb I. Fassett

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William F. Bottke

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge