Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Polya is active.

Publication


Featured researches published by David A. Polya.


Nature | 2004

Role of metal-reducing bacteria in arsenic release from Bengal delta sediments

Farhana S. Islam; Andrew G. Gault; Christopher Boothman; David A. Polya; John M. Charnock; Debashis Chatterjee; Jonathan R. Lloyd

The contamination of ground waters, abstracted for drinking and irrigation, by sediment-derived arsenic threatens the health of tens of millions of people worldwide, most notably in Bangladesh and West Bengal. Despite the calamitous effects on human health arising from the extensive use of arsenic-enriched ground waters in these regions, the mechanisms of arsenic release from sediments remain poorly characterized and are topics of intense international debate. We use a microscosm-based approach to investigate these mechanisms: techniques of microbiology and molecular ecology are used in combination with aqueous and solid phase speciation analysis of arsenic. Here we show that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal. We also show that, for the sediments in this study, arsenic release took place after Fe(iii) reduction, rather than occurring simultaneously. Identification of the critical factors controlling the biogeochemical cycling of arsenic is one important contribution to fully informing the development of effective strategies to manage these and other similar arsenic-rich ground waters worldwide.


Mineralogical Magazine | 2005

Arsenic hazard in shallow Cambodian groundwaters

David A. Polya; Andrew G. Gault; N. Diebe; P. Feldman; J. W. Rosenboom; E. Gilligan; D. Fredericks; A. H. Milton; Mickey L. Sampson; H. A L Rowland; Paul R. Lythgoe; J. C. Jones; C. Middleton; Donald A. Cooke

Abstract Our recent discovery of hazardous concentrations of arsenic in shallow sedimentary aquifers in Cambodia raises the spectre of future deleterious health impacts on a population that, particularly in non-urban areas, extensively use untreated groundwater as a source of drinking water and, in some instances, as irrigation water. We present here small-scale hazard maps for arsenic in shallow Cambodian groundwaters based on >1000 groundwater samples analysed in the Manchester Analytical Geochemistry Unit and elsewhere. Key indicators for hazardous concentrations of arsenic in Cambodian groundwaters include: (1) well depths greater than 16 m; (2) Holocene host sediments; and (3) proximity to major modem channels of the Mekong (and its distributary the Bassac). However, high-arsenic well waters are also commonly found in wells not exhibiting these key characteristics, notably in some shallower Holocene wells, and in wells drilled into older Quaternary and Neogene sediments. It is emphasized that the maps and tables presented are most useful for identifying current regional trends in groundwater arsenic hazard and that their use for predicting arsenic concentrations in individual wells, for example for the purposes of well switching, is not recommended, particularly because of the lack of sufficient data (especially at depths >80 m) and because, as in Bangladesh and West Bengal, there is considerable heterogeneity of groundwater arsenic concentrations on a scale of metres to hundreds of metres. We have insufficient data at this time to determine unequivocally whether or not arsenic concentrations are increasing in shallow Cambodian groundwaters as a result of groundwater-abstraction activities.


Applied and Environmental Microbiology | 2007

Molecular Analysis of Arsenate-Reducing Bacteria within Cambodian Sediments following Amendment with Acetate

Gavin Lear; Bongkeun Song; Andrew G. Gault; David A. Polya; Jonathan R. Lloyd

ABSTRACT The health of millions is threatened by the use of groundwater contaminated with sediment-derived arsenic for drinking water and irrigation purposes in Southeast Asia. The microbial reduction of sorbed As(V) to the potentially more mobile As(III) has been implicated in release of arsenic into groundwater, but to date there have been few studies of the microorganisms that can mediate this transformation in aquifers. With the use of stable isotope probing of nucleic acids, we present evidence that the introduction of a proxy for organic matter (13C-labeled acetate) stimulated As(V) reduction in sediments collected from a Cambodian aquifer that hosts arsenic-rich groundwater. This was accompanied by an increase in the proportion of prokaryotes closely related to the dissimilatory As(V)-reducing bacteria Sulfurospirillum strain NP-4 and Desulfotomaculum auripigmentum. As(V) respiratory reductase genes (arrA) closely associated with those found in Sulfurospirillum barnesii and Geobacter uraniumreducens were also detected in active bacterial communities utilizing 13C-labeled acetate in microcosms. This study suggests a direct link between inputs of organic matter and the increased prevalence and activity of organisms which transform As(V) to the potentially more mobile and thus hazardous As(III) via dissimilatory As(V) reduction.


Applied and Environmental Microbiology | 2005

Interactions between the Fe(III)-Reducing Bacterium Geobacter sulfurreducens and Arsenate, and Capture of the Metalloid by Biogenic Fe(II)

F. S. Islam; R. L. Pederick; Andrew G. Gault; Laura K. Adams; David A. Polya; John M. Charnock; Jonathan R. Lloyd

ABSTRACT Previous work has shown that microbial communities in As-mobilizing sediments from West Bengal were dominated by Geobacter species. Thus, the potential of Geobacter sulfurreducens to mobilize arsenic via direct enzymatic reduction and indirect mechanisms linked to Fe(III) reduction was analyzed. G. sulfurreducens was unable to conserve energy for growth via the dissimilatory reduction of As(V), although it was able to grow in medium containing fumarate as the terminal electron acceptor in the presence of 500 μM As(V). There was also no evidence of As(III) in culture supernatants, suggesting that resistance to 500 μM As(V) was not mediated by a classical arsenic resistance operon, which would rely on the intracellular reduction of As(V) and the efflux of As(III). When the cells were grown using soluble Fe(III) as an electron acceptor in the presence of As(V), the Fe(II)-bearing mineral vivianite was formed. This was accompanied by the removal of As, predominantly as As(V), from solution. Biogenic siderite (ferrous carbonate) was also able to remove As from solution. When the organism was grown using insoluble ferrihydrite as an electron acceptor, Fe(III) reduction resulted in the formation of magnetite, again accompanied by the nearly quantitative sorption of As(V). These results demonstrate that G. sulfurreducens, a model Fe(III)-reducing bacterium, did not reduce As(V) enzymatically, despite the apparent genetic potential to mediate this transformation. However, the reduction of Fe(III) led to the formation of Fe(II)-bearing phases that are able to capture arsenic species and could act as sinks for arsenic in sediments.


Science of The Total Environment | 2008

Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia.

Andrew G. Gault; Helen A.L. Rowland; John M. Charnock; Roy A. Wogelius; Inma Gomez-Morilla; Sovathana Vong; Moniphea Leng; Sopheap Samreth; Mickey L. Sampson; David A. Polya

The health implications of the consumption of high arsenic groundwater in Bangladesh and West Bengal are well-documented, however, little is known about the level of arsenic exposure elsewhere in Southeast Asia, where widespread exploitation of groundwater resources is less well established. We measured the arsenic concentrations of nail and hair samples collected from residents of Kandal province, Cambodia, an area recently identified to host arsenic-rich groundwaters, in order to evaluate the extent of arsenic exposure. Nail and hair arsenic concentrations ranged from 0.20 to 6.50 microg g(-1) (n=70) and 0.10 to 7.95 microg g(-1) (n=40), respectively, in many cases exceeding typical baseline levels. The arsenic content of the groundwater used for drinking water purposes (0.21-943 microg L(-1) (n=31)) was positively correlated with both nail (r=0.74, p<0.0001) and hair (r=0.86, p<0.0001) arsenic concentrations. In addition, the nail and hair samples collected from inhabitants using groundwater that exceeded the Cambodian drinking water legal limit of 50 microg L(-1) arsenic contained significantly more arsenic than those of individuals using groundwater containing <50 microg L(-1) arsenic. X-ray absorption near edge structure (XANES) spectroscopy suggested that sulfur-coordinated arsenic was the dominant species in the bulk of the samples analysed, with additional varying degrees of As(III)-O character. Tentative linear least squares fitting of the XANES data pointed towards differences in the pattern of arsenic speciation between the nail and hair samples analysed, however, mismatches in sample and standard absorption peak intensity prevented us from unambiguously determining the arsenic species distribution. The good correlation with the groundwater arsenic concentration, allied with the relative ease of sampling such tissues, indicate that the arsenic content of hair and nail samples may be used as an effective biomarker of arsenic intake in this relatively recently exposed population.


Geobiology | 2010

Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal

Marina Héry; B. E. van Dongen; Fiona L. Gill; Debapriya Mondal; David J. Vaughan; Rich D Pancost; David A. Polya; Jonathan R. Lloyd

High arsenic concentrations in groundwater are causing a humanitarian disaster in Southeast Asia. It is generally accepted that microbial activities play a critical role in the mobilization of arsenic from the sediments, with metal-reducing bacteria stimulated by organic carbon implicated. However, the detailed mechanisms underpinning these processes remain poorly understood. Of particular importance is the nature of the organic carbon driving the reduction of sorbed As(V) to the more mobile As(III), and the interplay between iron and sulphide minerals that can potentially immobilize both oxidation states of arsenic. Using a multidisciplinary approach, we identified the critical factors leading to arsenic release from West Bengal sediments. The results show that a cascade of redox processes was supported in the absence of high loadings of labile organic matter. Arsenic release was associated with As(V) and Fe(III) reduction, while the removal of arsenic was concomitant with sulphate reduction. The microbial populations potentially catalysing arsenic and sulphate reduction were identified by targeting the genes arrA and dsrB, and the total bacterial and archaeal communities by 16S rRNA gene analysis. Results suggest that very low concentrations of organic matter are able to support microbial arsenic mobilization via metal reduction, and subsequent arsenic mitigation through sulphate reduction. It may therefore be possible to enhance sulphate reduction through subtle manipulations to the carbon loading in such aquifers, to minimize the concentrations of arsenic in groundwaters.


Scientific Reports | 2013

High arsenic in rice is associated with elevated genotoxic effects in humans

Mayukh Banerjee; Nilanjana Banerjee; Pritha Bhattacharjee; Debapriya Mondal; Paul R. Lythgoe; Mario D. Martinez; Jianxin Pan; David A. Polya; Ashok K. Giri

Arsenic in drinking water may cause major deleterious health impacts including death. Although arsenic in rice has recently been demonstrated to be a potential exposure route for humans, there has been to date no direct evidence for the impact of such exposure on human health. Here we show for the first time, through a cohort study in West Bengal, India, involving over 400 human subjects not otherwise significantly exposed to arsenic through drinking water, elevated genotoxic effects, as measured by micronuclei (MN) in urothelial cells, associated with the staple consumption of cooked rice with >200 μg/kg arsenic. Further work is required to determine the applicability to populations with different dietary and genetic characteristics, but with over 3 billion people in the world consuming rice as a staple food and several percent of this rice containing such elevated arsenic concentrations, this study raises considerable concerns over the threat to human health.


Mineralogical Magazine | 2005

Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal

Andrew G. Gault; F. S. Islam; David A. Polya; John M. Charnock; Christopher Boothman; Debashis Chatterjee; Jonathan R. Lloyd

Abstract Arsenic mobilization and Fe(III) reduction in acetate-amended sediments collected from a range of depths from an aquifer with elevated groundwater arsenic concentrations in West Bengal were monitored over a 1 month period. Significant arsenic release was noted in sediment collected from 24 m and 45 m depth, with some Fe(III) reduction also observed in the 24 m sample. The structure of the microbial communities present in the sediments prior to incubation showed marked differences down the sediment column. Profiling of the microbial community in the 24 m and 45 m samples revealed a relatively complex make-up, with Acinetobacter species comprising the bulk of the 24 m sedimentary bacterial population, but no previously characterized As(V)-reducers were detected in either sample.


Science of The Total Environment | 2008

Changes in arsenic speciation through a contaminated soil profile: A XAS based study

B. Cances; Farid Juillot; Guillaume Morin; Valérie Laperche; David A. Polya; David J. Vaughan; Jean-Louis Hazemann; Olivier Proux; Gordon E. Brown; Georges Calas

An impacted soil located near an industrial waste site in the Massif Central near Auzon, France, where arsenical pesticides were manufactured, has been studied in order to determine the speciation (chemical forms) of arsenic as a function of soil depth. Bulk As concentrations range from 8780 mg kg(-1) in the topsoil horizon to 150 mg kg(-1) at 60 cm depth. As ores (orpiment As2S3, realgar AsS, arsenopyrite FeAsS) and former Pb- and Al-arsenate pesticides have been identified by XRD at the site and are suspected to be the sources of As contamination for this soil. As speciation was found to vary with depth, based on XRD, SEM-EDS, EPMA measurements and selective chemical extractions. Based on oxalate extraction, As is mainly associated with amorphous Fe oxides through the soil profile, except in the topsoil horizons where As is hosted by another phase. SEM-EDS and EPMA analyses led to the identification of arseniosiderite (Ca2Fe3+3(AsVO4)3O2.3H2O), a secondary mineral that forms upon oxidation of primary As-bearing minerals like arsenopyrite, in these topsoil horizons. These mineralogical and chemical results were confirmed by synchrotron-based X-ray absorption spectroscopy. XANES spectra of soil samples indicate that As occurs exclusively as As(V), and EXAFS results yield direct evidence of changes in As speciation with depth. Linear combination fits of EXAFS spectra of soil samples with those of various model compounds indicate that As occurs mainly As-bearing Fe(III)-(hydr)oxides (65%) and arseniosiderite (35%) in the topsoil horizon (0-5 cm depth). Similar analyses also revealed that there is very little arseniosiderite below 15 cm depth and that As(V) is associated primarily with amorphous Fe oxides below this depth. This vertical change of As speciation likely reflects a series of chemical reactions downward in the soil profile. Arseniosiderite, formed most likely by oxidation of arsenopyrite, is progressively dissolved and replaced by less soluble As-bearing poorly ordered Fe oxides, which are the main hosts for As in well aerated soils.


Journal of Environmental Quality | 2009

The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.

H A L Rowland; Christopher Boothman; Rich D Pancost; Andrew G. Gault; David A. Polya; Jonathan R. Lloyd

High levels of naturally occurring arsenic are found in the shallow reducing aquifers of West Bengal, Bangladesh, and other areas of Southeast Asia. These aquifers are used extensively for drinking water and irrigation by the local population. Mechanisms for its release are unclear, although increasing evidence points to a microbial control. The type of organic matter present is of vital importance because it has a direct impact on the rate of microbial activity and on the amount of arsenic released into the ground water. The discovery of naturally occurring hydrocarbons in an arsenic-rich aquifer from West Bengal provides a source of potential electron donors for this process. Using microcosm-based techniques, seven sediments from a site containing naturally occurring hydrocarbons in West Bengal were incubated with synthetic ground water for 28 d under anaerobic conditions without the addition of an external electron donor. Arsenic release and Fe(III) reduction appeared to be microbially mediated, with variable rates of arsenic mobilization in comparison to Fe(III) reduction, suggesting that multiple processes are involved. All sediments showed a preferential loss of petroleum-sourced n-alkanes over terrestrially sourced sedimentary hydrocarbons n-alkanes during the incubation, implying that the use of petroleum-sourced n-alkanes could support, directly or indirectly, microbial Fe(III) reduction. Samples undergoing maximal release of As(III) contained a significant population of Sulfurospirillum sp., a known As(V)-reducing bacterium, providing the first evidence that such organisms may mediate arsenic release from West Bengali aquifers.

Collaboration


Dive into the David A. Polya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debashis Chatterjee

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge