Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debapriya Mondal is active.

Publication


Featured researches published by Debapriya Mondal.


Environmental Science & Technology | 2011

Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with Age of Puberty among Children Living near a Chemical Plant

Maria-Jose Lopez-Espinosa; Tony Fletcher; Ben Armstrong; Bernd Genser; Ketan Dhatariya; Debapriya Mondal; Alan Ducatman; Giovanni Leonardi

Animal studies suggest that perfluorocarbons (PFCs) may alter sexual maturation. Relationships of human PFC exposure with puberty are not clear. We conducted a cross-sectional study to investigate whether perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were associated with indicators of sexual maturation in a 2005-2006 survey of residents with PFOA water contamination from the Mid-Ohio Valley. Participants were 3076 boys and 2931 girls aged 8-18 years. They were classified as having reached puberty based on either hormone levels (total >50 ng/dL and free >5 pg/mL testosterone in boys and estradiol >20 pg/mL in girls) or onset of menarche. We estimated the odds of having reached puberty classified by these criteria and the fitted median age of reaching puberty in relation to serum PFOA and PFOS concentrations measured when puberty status was assigned. For boys, there was a relationship of reduced odds of reached puberty (raised testosterone) with increasing PFOS (delay of 190 days between the highest and lowest quartile). For girls, higher concentrations of PFOA or PFOS were associated with reduced odds of postmenarche (130 and 138 days of delay, respectively). In conclusion, our study showed a later age of puberty in this population correlated with PFC concentrations.


Geobiology | 2010

Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal

Marina Héry; B. E. van Dongen; Fiona L. Gill; Debapriya Mondal; David J. Vaughan; Rich D Pancost; David A. Polya; Jonathan R. Lloyd

High arsenic concentrations in groundwater are causing a humanitarian disaster in Southeast Asia. It is generally accepted that microbial activities play a critical role in the mobilization of arsenic from the sediments, with metal-reducing bacteria stimulated by organic carbon implicated. However, the detailed mechanisms underpinning these processes remain poorly understood. Of particular importance is the nature of the organic carbon driving the reduction of sorbed As(V) to the more mobile As(III), and the interplay between iron and sulphide minerals that can potentially immobilize both oxidation states of arsenic. Using a multidisciplinary approach, we identified the critical factors leading to arsenic release from West Bengal sediments. The results show that a cascade of redox processes was supported in the absence of high loadings of labile organic matter. Arsenic release was associated with As(V) and Fe(III) reduction, while the removal of arsenic was concomitant with sulphate reduction. The microbial populations potentially catalysing arsenic and sulphate reduction were identified by targeting the genes arrA and dsrB, and the total bacterial and archaeal communities by 16S rRNA gene analysis. Results suggest that very low concentrations of organic matter are able to support microbial arsenic mobilization via metal reduction, and subsequent arsenic mitigation through sulphate reduction. It may therefore be possible to enhance sulphate reduction through subtle manipulations to the carbon loading in such aquifers, to minimize the concentrations of arsenic in groundwaters.


Scientific Reports | 2013

High arsenic in rice is associated with elevated genotoxic effects in humans

Mayukh Banerjee; Nilanjana Banerjee; Pritha Bhattacharjee; Debapriya Mondal; Paul R. Lythgoe; Mario D. Martinez; Jianxin Pan; David A. Polya; Ashok K. Giri

Arsenic in drinking water may cause major deleterious health impacts including death. Although arsenic in rice has recently been demonstrated to be a potential exposure route for humans, there has been to date no direct evidence for the impact of such exposure on human health. Here we show for the first time, through a cohort study in West Bengal, India, involving over 400 human subjects not otherwise significantly exposed to arsenic through drinking water, elevated genotoxic effects, as measured by micronuclei (MN) in urothelial cells, associated with the staple consumption of cooked rice with >200 μg/kg arsenic. Further work is required to determine the applicability to populations with different dietary and genetic characteristics, but with over 3 billion people in the world consuming rice as a staple food and several percent of this rice containing such elevated arsenic concentrations, this study raises considerable concerns over the threat to human health.


Environmental Health Perspectives | 2012

Thyroid Function and Perfluoroalkyl Acids in Children Living Near a Chemical Plant

Maria-Jose Lopez-Espinosa; Debapriya Mondal; Ben Armstrong; Michael S. Bloom; Tony Fletcher

Background: Animal studies suggest that some perfluoroalkyl acids (PFAAs), including perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA) may impair thyroid function. Epidemiological findings, mostly related to adults, are inconsistent. Objectives: We investigated whether concentrations of PFAAs were associated with thyroid function among 10,725 children (1–17 years of age) living near a Teflon manufacturing facility in the Mid-Ohio Valley (USA). Methods: Serum levels of thyroid-stimulating hormone (TSH), total thyroxine (TT4), and PFAAs were measured during 2005–2006, and information on diagnosed thyroid disease was collected by questionnaire. Modeled in utero PFOA concentrations were based on historical information on PFOA releases, environmental distribution, pharmacokinetic modeling, and residential histories. We performed multivariate regression analyses. Results: Median concentrations of modeled in utero PFOA and measured serum PFOA, PFOS, and PFNA were 12, 29, 20, and 1.5 ng/mL, respectively. The odds ratio for hypothyroidism (n = 39) was 1.54 [95% confidence interval (CI): 1.00, 2.37] for an interquartile range (IQR) contrast of 13 to 68 ng/mL in serum PFOA measured in 2005–2006. However, an IQR shift in serum PFOA was not associated with TSH or TT4 levels in all children combined. IQR shifts in serum PFOS (15 to 28 ng/mL) and serum PFNA (1.2 to 2.0 ng/mL) were both associated with a 1.1% increase in TT4 in children 1–17 years old (95% CIs: 0.6, 1.5 and 0.7, 1.5 respectively). Conclusions: This is the first large-scale report in children suggesting associations of serum PFOS and PFNA with thyroid hormone levels and of serum PFOA and hypothyroidism.


Environment International | 2014

Effect of mobile telephones on sperm quality: A systematic review and meta-analysis☆

Jessica A. Adams; Tamara S. Galloway; Debapriya Mondal; Sandro C. Esteves; Fiona Mathews

Mobile phones are owned by most of the adult population worldwide. Radio-frequency electromagnetic radiation (RF-EMR) from these devices could potentially affect sperm development and function. Around 14% of couples in high- and middle-income countries have difficulty conceiving, and there are unexplained declines in semen quality reported in several countries. Given the ubiquity of mobile phone use, the potential role of this environmental exposure needs to be clarified. A systematic review was therefore conducted, followed by meta-analysis using random effects models, to determine whether exposure to RF-EMR emitted from mobile phones affects human sperm quality. Participants were from fertility clinic and research centres. The sperm quality outcome measures were motility, viability and concentration, which are the parameters most frequently used in clinical settings to assess fertility. We used ten studies in the meta-analysis, including 1492 samples. Exposure to mobile phones was associated with reduced sperm motility (mean difference -8.1% (95% CI -13.1, -3.2)) and viability (mean difference -9.1% (95% CI -18.4, 0.2)), but the effects on concentration were more equivocal. The results were consistent across experimental in vitro and observational in vivo studies. We conclude that pooled results from in vitro and in vivo studies suggest that mobile phone exposure negatively affects sperm quality. Further study is required to determine the full clinical implications for both sub-fertile men and the general population.


Environmental Health Perspectives | 2013

Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids.

Debapriya Mondal; Rosana H. Weldon; Ben Armstrong; Lorna J. Gibson; Maria-Jose Lopez-Espinosa; Hyeong-Moo Shin; Tony Fletcher

Background: The presence of perfluoroalkyl acids (PFAAs) in breast milk has been documented, but their lactational transfer has been rarely studied. Determination of the elimination rates of these chemicals during breastfeeding is important and critical for assessing exposure in mothers and infants. Objectives: We aimed to investigate the association between breastfeeding and maternal serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). For a subset of the population, for whom we also have their infants’ measurements, we investigated associations of breastfeeding with infant serum PFAA concentrations. Methods: The present analysis included 633 women from the C8 Science Panel Study who had a child < 3.5 years of age and who provided blood samples and reported detailed information on breastfeeding at the time of survey. PFAA serum concentrations were available for all mothers and 8% (n = 49) of the infants. Maternal and infant serum concentrations were regressed on duration of breastfeeding. Results: Each month of breastfeeding was associated with lower maternal serum concentrations of PFOA (–3%; 95% CI: –5, –2%), PFOS (–3%; 95% CI: –3, –2%), PFNA (–2%; 95% CI: –2, –1%), and PFHxS (–1%; 95% CI: –2, 0%). The infant PFOA and PFOS serum concentrations were 6% (95% CI: 1, 10%) and 4% (95% CI: 1, 7%) higher per month of breastfeeding. Conclusions: Breast milk is the optimal food for infants, but is also a PFAA excretion route for lactating mothers and exposure route for nursing infants. Citation: Mondal D, Weldon RH, Armstrong BG, Gibson LJ, Lopez-Espinosa MJ, Shin HM, Fletcher T. 2014. Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids. Environ Health Perspect 122:187–192; http://dx.doi.org/10.1289/ehp.1306613


Environmental Science & Technology | 2013

Pond-Derived Organic Carbon Driving Changes in Arsenic Hazard Found in Asian Groundwaters

Michael Lawson; David A. Polya; Adrian J. Boyce; Charlotte L. Bryant; Debapriya Mondal; Andrew Shantz; Chris J. Ballentine

Microbially mediated reductive processes involving the oxidation of labile organic carbon are widely considered to be critical to the release of arsenic into shallow groundwaters in South and Southeast Asia. In areas where there is significant pumping of groundwater for irrigation the involvement of surface-derived organic carbon drawn down from ponds into the underlying aquifers has been proposed but remains highly controversial. Here we present isotopic data from two sites with contrasting groundwater pumping histories that unequivocally demonstrate the ingress of surface pond-derived organic carbon into arsenic-containing groundwaters. We show that pond-derived organic carbon is transported to depths of up to 50 m even in an arsenic-contaminated aquifer in Cambodia thought to be minimally disturbed by groundwater pumping. In contrast, in the extensively exploited groundwaters of West Bengal, we show that pond-derived organic carbon is transported in shallow groundwater to greater depths, in excess of 100 m in the aquifer. Intensive pumping of groundwaters may potentially drive secular increases in the groundwater arsenic hazard in this region by increasing the contribution of bioavailable pond-derived dissolved organic carbon drawn into these aquifer systems and transporting it to greater depths than would operate under natural flow conditions.


BMC Medicine | 2014

Elevated risk of stillbirth in males: systematic review and meta-analysis of more than 30 million births

Debapriya Mondal; Tamara S. Galloway; Trevor C. Bailey; Fiona Mathews

BackgroundStillbirth rates have changed little over the last decade, and a high proportion of cases are unexplained. This meta-analysis examined whether there are inequalities in stillbirth risks according to sex.MethodsA systematic review of the literature was conducted, and data were obtained on more than 30 million birth outcomes reported in observational studies. The pooled relative risk of stillbirth was estimated using random-effects models.ResultsThe crude mean rate (stillbirths/1,000 total births) was 6.23 for males and 5.74 for females. The pooled relative risk was 1.10 (95% confidence interval (CI): 1.07-1.13). The attributable fraction in the whole population was 4.2% (95% CI: 3.70-4.63), and the attributable fraction among male fetuses was 7.8% (95% CI: 7.0-8.66). Study populations from countries with known sex-biased sex selection issues had anomalous stillbirth sex ratios and higher overall stillbirth risks than other countries, reflecting increased mortality among females.ConclusionsRisk of stillbirth in males is elevated by about 10%. The population-attributable risk is comparable to smoking and equates to approximately 100,000 stillbirths per year globally. The pattern is consistent across countries of varying incomes. Given current difficulties in reducing stillbirth rates, work to understand the causes of excess male risk is warranted. We recommend that stillbirths are routinely recorded by sex. This will also assist in exposing prenatal sex selection as elevated or equal risks of stillbirth in females would be readily apparent and could therefore be used to trigger investigation.


Environmental Health Perspectives | 2012

Relationships of Perfluorooctanoate and Perfluorooctane Sulfonate Serum Concentrations between Mother–Child Pairs in a Population with Perfluorooctanoate Exposure from Drinking Water

Debapriya Mondal; Maria-Jose Lopez-Espinosa; Ben Armstrong; Cheryl R. Stein; Tony Fletcher

Background: There are limited data on the associations between maternal or newborn and child exposure to perfluoroalkyl acids (PFAAs), including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). This study provides an opportunity to assess the association between PFAA concentrations in mother–child pairs in a population exposed to PFOA via drinking water. Objectives: We aimed to determine the relationship between mother–child PFAA serum concentrations and to examine how the child:mother ratio varies with child’s age, child’s sex, drinking-water PFOA concentration, reported bottled water use, and mother’s breast-feeding intention. Methods: We studied 4,943 mother–child pairs (children, 1–19 years of age). The child:mother PFAA ratio was stratified by possible determinants. Results are summarized as geometric mean ratios and correlation coefficients between mother–child pairs, overall and within strata. Results: Child and mother PFOA and PFOS concentrations were correlated (r = 0.82 and 0.26, respectively). Up to about 12 years of age, children had higher serum PFOA concentrations than did their mothers. The highest child:mother PFOA ratio was found among children ≤ 5 years (44% higher than their mothers), which we attribute to in utero exposure and to exposure via breast milk and drinking water. Higher PFOS concentrations in children persisted until at least 19 years of age (42% higher than their mothers). Boys > 5 years of age had significantly higher PFOA and PFOS child:mother ratios than did girls. Conclusion: Concentrations of both PFOA and PFOS tended to be higher in children than in their mothers. This difference persisted until they were about 12 years of age for PFOA and at least 19 years of age for PFOS.


Environmental Health Perspectives | 2016

Perfluoroalkyl Substances, Sex Hormones, and Insulin-like Growth Factor-1 at 6-9 Years of Age: A Cross-Sectional Analysis within the C8 Health Project.

Maria-Jose Lopez-Espinosa; Debapriya Mondal; Ben Armstrong; Brenda Eskenazi; Tony Fletcher

Background: Exposure to some perfluoroalkyl substances (PFAS), such as perfluorohexane sulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA), may alter levels of sex hormones and insulin-like growth factor-1 (IGF-1) in animals. Human studies on this topic are scarce, and none have been conducted in young children. Objectives: We investigated the relationship between levels of PFAS and estradiol, total testosterone, and IGF-1 in 2,292 children (6–9 years of age) from the C8 Health Project who lived near a chemical plant in the Mid-Ohio Valley (USA) with local contamination from PFOA. Methods: Serum samples were collected in 2005–2006 and analyzed for PFAS, sex hormones, and IGF-1. Results from regression models were expressed as the adjusted percentage difference (95% CI) per sex-specific interquartile range (IQR) increment of each PFAS serum concentration. Analyses by PFAS quartiles were also conducted. Results: Median concentrations of PFHxS, PFOA, PFOS, and PFNA were 8, 35, 22, and 1.7 ng/mL in boys and 7, 30, 21, and 1.7 ng/mL in girls. In boys, PFOA concentrations were significantly associated with testosterone levels (–4.9%; 95% CI: –8.7, –0.8%); PFOS with estradiol (–4.0%; 95% CI: –7.7, –0.1%), testosterone (–5.8%; 95% CI: –9.4, –2.0%), and IGF-1 (–5.9%; 95% CI: –8.3, –3.3%); and PFNA with IGF-1 (–3.5%; 95% CI: –6.0, –1.0%). In girls, significant associations were found between PFOS and testosterone (–6.6%; 95% CI: –10.1, –2.8%) and IGF-1 (–5.6%; –8.2, –2.9%); and PFNA and IGF-1 (–3.8%; 95% CI: –6.4, –1.2%). In both sexes, the magnitudes of the associations decreased monotonically across quartiles for both testosterone and IGF-1 in relation to PFOS, and for IGF-1 and PFNA in girls. Conclusions: To our knowledge, this is the first study suggesting that PFAS are associated with lower levels of IGF-1 and sex hormones in young children. Citation: Lopez-Espinosa MJ, Mondal D, Armstrong BG, Eskenazi B, Fletcher T. 2016. Perfluoroalkyl substances, sex hormones, and insulin-like growth factor-1 at 6–9 years of age: a cross-sectional analysis within the C8 Health Project. Environ Health Perspect 124:1269–1275; http://dx.doi.org/10.1289/ehp.1509869

Collaboration


Dive into the Debapriya Mondal's collaboration.

Top Co-Authors

Avatar

David A. Polya

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashok K. Giri

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayukh Banerjee

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Michael Lawson

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Aimee Hegan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge