Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Tice is active.

Publication


Featured researches published by David A. Tice.


Oncogene | 2001

Src family kinases and HER2 interactions in human breast cancer cell growth and survival

Allison P. Belsches-Jablonski; Jacqueline S. Biscardi; Dena R Peavy; David A. Tice; Davis A Romney; Sarah J. Parsons

Evidence from murine fibroblast models and human breast cancer cells indicates that c-Src and human EGF receptor (HER1) synergize to enhance neoplastic growth of mammary epithelial cells. To investigate whether interactions between c-Src and other HER family members may also play a role in breast tumor progression, we characterized 13 human breast carcinoma cell lines and 13 tumor samples for expression of HER family members and c-Src and examined a subset of the cell lines for Src-dependent, heregulin (HRG)-augmented, anchorage-dependent and independent growth. By immunoblotting, we found that all cell lines overexpressed one or more HER family member, and 60% overexpressed c-Src. Seventy-five per cent of the tumor tissues overexpressed HER2, while 64% overexpressed c-Src. Colony formation in soft agar was enhanced by HRG in three of five cell lines tested, a response that correlated with the presence of a c-Src/HER2 heterocomplex. This result suggests that HRG may act through both HER2 and c-Src to facilitate anchorage-independent growth. In contrast, HRG had little effect on anchorage-dependent growth in any of the cell lines tested. PP1, a Src family kinase inhibitor, reduced or ablated HRG-dependent and independent soft agar growth or anchorage dependent growth, and triggered apoptosis in all cell lines tested. The apoptotic effect of PP1 could be partially or completely reversed by HRG, depending on the cell line. These results suggest that while Src family kinases may cooperate with HRG to promote the survival and growth of human breast tumor cells, they also function independently of HER2/HRG in these processes.


Cancer Research | 2008

A Human Antibody–Drug Conjugate Targeting EphA2 Inhibits Tumor Growth In vivo

Dowdy Jackson; John Gooya; Shenlan Mao; Krista Kinneer; Linda Xu; Margarita Camara; Christine Fazenbaker; Ryan Fleming; Sudha Swamynathan; Damon L. Meyer; Peter D. Senter; Changshou Gao; Herren Wu; Michael S. Kinch; Steven Coats; Peter A. Kiener; David A. Tice

The EphA2 receptor tyrosine kinase is selectively expressed on the surface of many different human tumors. We have previously shown that tumor cells can be targeted by EphA2 monoclonal antibodies and that these antibodies function, in part, by inducing EphA2 internalization and degradation. In this report, we describe the isolation and characterization of a fully human monoclonal antibody (1C1) that selectively binds both the human and rodent EphA2 receptor. After cell binding, the antibody induces rapid tyrosine phosphorylation, internalization, and degradation of the EphA2 receptor. Because monoclonal antibodies that selectively bind tumor cells and internalize provide a vehicle for targeted delivery of cytotoxics, 1C1 was conjugated to the microtubule inhibitor monomethylauristatin phenylalanine using a stable maleimidocaproyl linker. The anti-EphA2 antibody-drug conjugate [1C1-maleimidocaproyl-MMAF (mcMMAF)] stimulated the activation of caspase-3/caspase-7 and the death of EphA2-expressing cells with IC(50) values as low as 3 ng/mL. Similarly, the conjugate induced degradation of the EphA2 receptor and inhibited tumor growth in vivo. Administration of 1C1-mcMMAF at doses as low as 1 mg/kg once weekly resulted in significant growth inhibition of EphA2-expressing tumors without any observable adverse effects in mouse xenograft and rat syngeneic tumor models. Our data support the use of an antibody-drug conjugate approach to selectively target and inhibit the growth of EphA2-expressing tumors.


Oncogene | 2012

A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth.

Katie Streicher; Wei Zhu; Kim Lehmann; Robert W. Georgantas; Christopher Morehouse; Philip Brohawn; R A Carrasco; Zhan Xiao; David A. Tice; Brandon W. Higgs; Laura Richman; Bahija Jallal; Koustubh Ranade; Yihong Yao

Malignant melanoma is the most aggressive form of skin cancer and its incidence has doubled in the last two decades. It represents only 4% of skin cancer cases per year, but causes as many as 74% of skin cancer deaths. Early detection of malignant melanoma is associated with survival rates of up to 90%, but later detection (stage III to stage IV) is associated with survival rates of only 10%. Dysregulation of microRNA (miRNA) expression has been linked to tumor development and progression by functioning either as a tumor suppressor, an oncogene or a metastasis regulator in multiple cancer types. To understand the role of miRNA in the pathogenesis of malignant melanoma and identify biomarkers of metastasis, miRNA expression profiles in skin punches from 33 metastatic melanoma patients and 14 normal healthy donors were compared. We identified a cluster of 14 miRNAs on the X chromosome, termed the miR-506-514 cluster, which was consistently overexpressed in nearly all melanomas tested (30–60 fold, P<0.001), regardless of mutations in N-ras or B-raf. Inhibition of the expression of this cluster as a whole, or one of its sub-clusters (Sub-cluster A) consisting of six mature miRNAs, led to significant inhibition of cell growth, induction of apoptosis, decreased invasiveness and decreased colony formation in soft agar across multiple melanoma cell lines. Sub-cluster A of the miR-506-514 cluster was critical for maintaining the cancer phenotype, but the overexpression of the full cluster was necessary for melanocyte transformation. Our results provide new insights into the functional role of this miRNA cluster in melanoma, and suggest new approaches to treat or diagnose this disease.


Molecular Cancer Therapeutics | 2006

Direct targeting of αvβ3 integrin on tumor cells with a monoclonal antibody, Abegrin™

Kathy Mulgrew; Krista Kinneer; Xiao-Tao Yao; Beth K. Ward; Melissa Damschroder; Bill Walsh; Su-Yau Mao; Changshou Gao; Peter A. Kiener; Steve Coats; Michael S. Kinch; David A. Tice

The humanized monoclonal antibody Abegrin™, currently in phase II trials for treatment of solid tumors, specifically recognizes the integrin αvβ3. Due to its high expression on mature osteoclasts, angiogenic endothelial cells, and tumor cells, integrin αvβ3 functions in several pathologic processes important to tumor growth and metastasis. Targeting of this integrin with Abegrin™ results in antitumor, antiangiogenic, and antiosteolytic activities. Here, we exploit the species specificity of Abegrin™ to evaluate the effects of direct targeting of tumor cells (independent of targeting of endothelia or osteoclasts). Flow cytometry analysis of human tumor cell lines shows high levels of αvβ3 on many solid tumors, including cancers of the prostate, skin, ovary, kidney, lung, and breast. We also show that tumor growth of αvβ3-expressing tumor cells is inhibited by Abegrin™ in a dose-dependent manner. We present a novel finding that high-dose administration can actively impair the antitumor activity of Abegrin™. We also provide evidence that antibody-dependent cellular cytotoxicity contributes to in vitro and in vivo antitumor activity. Finally, it was observed that peak biological activity of Abegrin™ arises at serum levels that are consistent with those achieved in clinical trials. These results support a concept that Abegrin™ can be used to achieve selective targeting of the many tumor cells that express αvβ3 integrin. In combination with the well-established concept that αvβ3 plays a key role in cancer-associated angiogenesis and osteolytic activities, this triad of activity could provide new opportunities for therapeutic targeting of cancer. [Mol Cancer Ther 2006;5(12):3122–9]


Journal of the National Cancer Institute | 2009

EphA2 Immunoconjugate as Molecularly Targeted Chemotherapy for Ovarian Carcinoma

Jeong Won Lee; Hee Dong Han; Mian M.K. Shahzad; Seung Wook Kim; Lingegowda S. Mangala; Alpa M. Nick; Chunhua Lu; Robert R. Langley; Rosemarie Schmandt; Hye Sun Kim; Shenlan Mao; John Gooya; Christine Fazenbaker; Dowdy Jackson; David A. Tice; Charles N. Landen; Robert L. Coleman; Anil K. Sood

BACKGROUND EphA2 is overexpressed in many types of human cancer but is absent or expressed at low levels in normal epithelial tissues. We investigated whether a novel immunoconjugate containing an anti-EphA2 monoclonal antibody (1C1) linked to a chemotherapeutic agent (monomethyl auristatin phenylalanine [MMAF]) through a noncleavable linker maleimidocaproyl (mc) had antitumor activity against ovarian cancer cell lines and tumor models. METHODS Specificity of 1C1-mcMMAF was examined in EphA2-positive HeyA8 and EphA2-negative SKMel28 ovarian cancer cells by antibody binding and internalization assays. Controls were phosphate-buffered saline (PBS), 1C1, or control IgG-mcMMAF. Viability and apoptosis were investigated in ovarian cancer cell lines and tumor models (10 mice per group). Antitumor activities were tested in the HeyA8-luc and SKOV3ip1 orthotopic mouse models of ovarian cancer. Endothelial cells were identified by use of immunohistochemistry and anti-CD31 antibodies. All statistical tests were two-sided. RESULTS The 1C1-mcMMAF immunoconjugate specifically bound to EphA2-positive HeyA8 cells but not to EphA2-negative cells and was internalized by HeyA8 cells. Treatment with 1C1-mcMMAF decreased the viability of HeyA8-luc cells in an EphA2-specific manner. In orthotopic mouse models, treatment with 1C1-mcMMAF inhibited tumor growth by 85%-98% compared with that in control mice (eg, for weight of HeyA8 tumors, 1C1-mcMMAF = 0.05 g and control = 1.03 g; difference = 0.98 g, 95% confidence interval [CI] = 0.40 to 1.58 g; P = .001). Even in bulkier disease models with HeyA8-luc cells, 1C1-mcMMAF treatment, compared with control treatment, caused regression of established tumors and increased survival of the mice (eg, 1C1-mcMMAF vs control, mean = 60.6 days vs 29.4 days; difference = 31.2 days, 95% CI = 27.6 to 31.2 days; P = .001). The antitumor effects of 1C1-mcMMAF therapy, in SKOV3ip1 tumors, for example, were statistically significantly related to decreased proliferation (eg, 1C1-mcMMAF vs control, mean = 44.1% vs 55.8% proliferating cells; difference = 11.7%, 95% CI = 2.45% to 20.9%; P = .01) and increased apoptosis of tumor cells (eg, 1C1-mcMMAF vs control, mean = 8.6% vs 0.9% apoptotic cells; difference = 7.7%, 95% CI = 3.8% to 11.7%; P < .001) and of mouse endothelial cells (eg, 1C1-mcMMAF vs control, mean 2.8% vs 0.4% apoptotic endothelial cells; difference = 2.4%, 95% CI = 1.4% to 4.6%; P = .034). CONCLUSION The 1C1-mcMMAF immunoconjugate had antitumor activity in preclinical models of ovarian carcinoma.


Cellular Signalling | 2011

Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells.

Nai-Ying Yang; Carlos Fernandez; Melanie Richter; Zhan Xiao; Fatima Valencia; David A. Tice; Elena B. Pasquale

Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.


Journal of Clinical Investigation | 2014

Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression

Stéphanie Sungalee; Emilie Mamessier; Ester Morgado; Emilie Gregoire; Philip Brohawn; Christopher Morehouse; Nathalie Jouve; Céline Monvoisin; Cédric Ménard; Guilhaume Debroas; Mustapha Faroudi; Violaine Mechin; Jean-Marc Navarro; Charlotte Drevet; Franziska C. Eberle; Lionel Chasson; Fannie Baudimont; Stéphane J. C. Mancini; Julie Tellier; Jean-Michel Picquenot; Rachel S. Kelly; Paolo Vineis; Philippe Ruminy; Bruno Chetaille; Elaine S. Jaffe; Claudine Schiff; Jean Hardwigsen; David A. Tice; Brandon W. Higgs; Karin Tarte

It has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)(+) memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation-induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)(+) precursors and shapes the systemic presentation of FL patients.


Cancer Biology & Therapy | 2012

EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: Implications for EphB4 as a cancer target

Zhan Xiao; Rosa A. Carrasco; Krista Kinneer; Darrin Sabol; Bahija Jallal; Steve Coats; David A. Tice

EphB4 is a member of the Eph receptor tyrosine kinase family shown to act in neuronal guidance and mediate venal/arterial separation. In contrast to these more established roles, EphB4’s function in cancer is much less clear. Here we illustrate both tumor promoting as well as suppressing roles of EphB4, by showing that its activation resulted in inhibition of the Ras/ERK pathway in endothelial cells but activation of the same pathway in MCF-7 breast cancer cells. This was true if EphB4 was stimulated with EphrinB2, its natural ligand, or an agonistic monoclonal antibody for EphB4. Correspondingly, EphB4 activation stimulated MCF7 growth while inhibiting HUVEC cell proliferation. The reason for these dramatic differences is due to functional coupling of EphB4 to different downstream effectors. Reduction of p120 RasGAP in HUVEC cells attenuated the inhibitory effect of EphB4 activation on the ERK pathway, whereas knockdown of PP2A in MCF7 cells attenuated EphB4 activation of the ERK pathway. This represents the first time a functional coupling between Eph receptor and PP2A has been demonstrated leading to activation of an oncogenic pathway. Our study illustrates the caveats and potential challenges of targeting EphB4 for cancer therapy due to the conflicting effects on cancer cell and endothelial cell compartments.


Molecular Cancer Therapeutics | 2013

Multivalent Scaffold Proteins as Superagonists of TRAIL Receptor 2–Induced Apoptosis

Jeffery Swers; Luba Grinberg; Lin Wang; Hui Feng; Kristen Lekstrom; Rosa A. Carrasco; Zhan Xiao; Ivan Inigo; Ching Ching Leow; Herren Wu; David A. Tice; Manuel Baca

Activation of TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2) can induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in normal cells. The natural ligand and agonistic antibodies show antitumor activity in preclinical models of cancer, and this had led to significant excitement in the clinical potential of these agents. Unfortunately, this optimism has been tempered by trial data that, thus far, are not showing clear signs of efficacy in cancer patients. The reasons for discrepant preclinical and clinical observations are not understood, but one possibility is that the current TRAILR2 agonists lack sufficient potency to achieve a meaningful response in patients. Toward addressing that possibility, we have developed multivalent forms of a new binding scaffold (Tn3) that are superagonists of TRAILR2 and can induce apoptosis in tumor cell lines at subpicomolar concentrations. The monomer Tn3 unit was a fibronectin type III domain engineered for high-affinity TRAILR2 binding. Multivalent presentation of this basic unit induced cell death in TRAILR2-expressing cell lines. Optimization of binding affinity, molecular format, and valency contributed to cumulative enhancements of agonistic activity. An optimized multivalent agonist consisting of 8 tandem Tn3 repeats was highly potent in triggering cell death in TRAIL-sensitive cell lines and was 1 to 2 orders of magnitude more potent than TRAIL. Enhanced potency was also observed in vivo in a tumor xenograft setting. The TRAILR2 superagonists described here have the potential for superior clinical activity in settings insensitive to the current therapeutic agonists that target this pathway. Mol Cancer Ther; 12(7); 1235–44. ©2013 AACR.


PLOS Genetics | 2016

Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer.

Liyan Jiang; Jiaqi Huang; Brandon W. Higgs; Zhibin Hu; Zhan Xiao; Xin Yao; Sarah J. Conley; Haihong Zhong; Zheng Liu; Philip Brohawn; Dong Shen; Song Wu; Xiaoxiao Ge; Jiang Y; Yizhuo Zhao; Yuqing Lou; Chris Morehouse; Wei Zhu; Yinong Sebastian; Meggan Czapiga; Vaheh Oganesyan; Haihua Fu; Yanjie Niu; Wei Zhang; Katie Streicher; David A. Tice; Heng Zhao; Meng Zhu; Lin Xu; Ronald Herbst

Small cell lung cancer (SCLC) is an aggressive disease with poor survival. A few sequencing studies performed on limited number of samples have revealed potential disease-driving genes in SCLC, however, much still remains unknown, particularly in the Asian patient population. Here we conducted whole exome sequencing (WES) and transcriptomic sequencing of primary tumors from 99 Chinese SCLC patients. Dysregulation of tumor suppressor genes TP53 and RB1 was observed in 82% and 62% of SCLC patients, respectively, and more than half of the SCLC patients (62%) harbored TP53 and RB1 mutation and/or copy number loss. Additionally, Serine/Arginine Splicing Factor 1 (SRSF1) DNA copy number gain and mRNA over-expression was strongly associated with poor survival using both discovery and validation patient cohorts. Functional studies in vitro and in vivo demonstrate that SRSF1 is important for tumorigenicity of SCLC and may play a key role in DNA repair and chemo-sensitivity. These results strongly support SRSF1 as a prognostic biomarker in SCLC and provide a rationale for personalized therapy in SCLC.

Collaboration


Dive into the David A. Tice's collaboration.

Researchain Logo
Decentralizing Knowledge