Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Tobin is active.

Publication


Featured researches published by David C. Tobin.


Bulletin of the American Meteorological Society | 2006

AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

Moustafa T. Chahine; Thomas S. Pagano; Hartmut H. Aumann; Robert Atlas; Christopher D. Barnet; John Blaisdell; Luke Chen; Murty Divakarla; Eric J. Fetzer; Mitch Goldberg; Catherine Gautier; Stephanie Granger; Scott E. Hannon; F. W. Irion; Ramesh Kakar; Eugenia Kalnay; Bjorn Lambrigtsen; Sung-Yung Lee; John Le Marshall; W. Wallace McMillan; Larry M. McMillin; Edward T. Olsen; Henry E. Revercomb; Philip W. Rosenkranz; William L. Smith; David H. Staelin; L. Larrabee Strow; Joel Susskind; David C. Tobin; Walter Wolf

Abstract The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAAs requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols. The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECM...


Bulletin of the American Meteorological Society | 2012

Hyperspectral Earth Observation from IASI: Five Years of Accomplishments

Fiona Hilton; Raymond Armante; Thomas August; Christopher D. Barnet; Aurélie Bouchard; C. Camy-Peyret; Virginie Capelle; Lieven Clarisse; Cathy Clerbaux; Pierre-François Coheur; Andrew Collard; Cyril Crevoisier; G. Dufour; David P. Edwards; François Faijan; Nadia Fourrié; Antonia Gambacorta; Mitchell D. Goldberg; Vincent Guidard; Daniel Hurtmans; Sam Illingworth; Nicole Jacquinet-Husson; Tobias Kerzenmacher; Dieter Klaes; L. Lavanant; Guido Masiello; Marco Matricardi; A. P. McNally; Stuart M. Newman; Edward Pavelin

The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellitess (EUMETSATs) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produ...


Bulletin of the American Meteorological Society | 2013

Achieving Climate Change Absolute Accuracy in Orbit

Bruce A. Wielicki; David F. Young; M. G. Mlynczak; Kurt J. Thome; Stephen S. Leroy; James M. Corliss; J. G. Anderson; Chi O. Ao; Richard J. Bantges; Fred A. Best; Kevin W. Bowman; Helen E. Brindley; James J. Butler; William D. Collins; John Andrew Dykema; David R. Doelling; Daniel R. Feldman; Nigel P. Fox; Xianglei Huang; Robert E. Holz; Yi Huang; Zhonghai Jin; D. Jennings; David G. Johnson; K. Jucks; Seima Kato; Daniel Bernard Kirk-Davidoff; Robert O. Knuteson; Greg Kopp; David P. Kratz

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREOs inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earths thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...


Philosophical Transactions of the Royal Society A | 2012

Development and recent evaluation of the MT_CKD model of continuum absorption

Eli J. Mlawer; Vivienne H. Payne; Jean-Luc Moncet; Jennifer Delamere; Matthew J. Alvarado; David C. Tobin

Water vapour continuum absorption is an important contributor to the Earths radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies) water vapour continuum absorption model. The perspective adopted in developing the MT_CKD model has been to constrain the model so that it is consistent with quality analyses of spectral atmospheric and laboratory measurements of the foreign and self continuum. For field measurements, only cases for which the characterization of the atmospheric state has been highly scrutinized have been used. Continuum coefficients in spectral regions that have not been subject to compelling analyses are determined by a mathematical formulation of the spectral shape associated with each water vapour monomer line. This formulation, which is based on continuum values in spectral regions in which the coefficients are well constrained by measurements, is applied consistently to all water vapour monomer lines from the microwave to the visible. The results are summed-up (separately for the foreign and self) to obtain continuum coefficients from 0 to 20 000 cm−1. For each water vapour line, the MT_CKD line shape formulation consists of two components: exponentially decaying far wings of the line plus a contribution from a water vapour molecule undergoing a weak interaction with a second molecule. In the MT_CKD model, the first component is the primary agent for the continuum between water vapour bands, while the second component is responsible for the majority of the continuum within water vapour bands. The MT_CKD model should be regarded as a semi-empirical model with strong constraints provided by the known physics. Keeping the MT_CKD continuum consistent with current observational studies necessitates periodic updates to the water vapour continuum coefficients. In addition to providing details on the MT_CKD line shape formulation, we describe the most recent update to the model, MT_CKD_2.5, which is based on an analysis of satellite- and ground-based observations from 2385 to 2600 cm−1 (approx. 4 μm).


Bulletin of the American Meteorological Society | 2011

The Global Space-Based Inter-Calibration System

Mitch Goldberg; George Ohring; James J. Butler; Changyong Cao; R. Datla; David R. Doelling; V. Gärtner; T. Hewison; B. Iacovazzi; D. Kim; T. Kurino; J. Lafeuille; P. Minnis; D. Renaut; J. Schmetz; David C. Tobin; Likun Wang; Fuzhong Weng; Xiangqian Wu; Fangfang Yu; Peng Zhang; Tong Zhu

The Global Space-based Inter-Calibration System (GSICS) is a new international program to assure the comparability of satellite measurements taken at different times and locations by different instruments operated by different satellite agencies. Sponsored by the World Meteorological Organization and the Coordination Group for Meteorological Satellites, GSICS will intercalibrate the instruments of the international constellation of operational low-earth-orbiting (LEO) and geostationary earth-orbiting (GEO) environmental satellites and tie these to common reference standards. The intercomparability of the observations will result in more accurate measurements for assimilation in numerical weather prediction models, construction of more reliable climate data records, and progress toward achieving the societal goals of the Global Earth Observation System of Systems. GSICS includes globally coordinated activities for prelaunch instrument characterization, onboard routine calibration, sensor intercomparison of...


Journal of Quantitative Spectroscopy & Radiative Transfer | 2003

The ISSWG line-by-line inter-comparison experiment

S.A Tjemkes; T Patterson; R Rizzi; M.W Shephard; S.A Clough; Marco Matricardi; Joanna D. Haigh; M Höpfner; S Payan; A Trotsenko; N.A. Scott; P Rayer; Jonathan P. Taylor; Cathy Clerbaux; L. Larrabee Strow; S DeSouza-Machado; David C. Tobin; Robert O. Knuteson

Abstract To document the performance of current line-by-line radiative transfer models, a study was performed to compare the model simulations with real observations and also inter-compare the simulations themselves. Two broadband mid-IR observed spectra with high spectral resolution were analyzed. The observations were done in nadir mode, and at the same time the atmospheric state was carefully monitored. The first dataset consisted of radiance observations using the HIS interferometer during the CAMEX-1 campaign off the east coast of the USA. The second dataset consisted of observations from the ARIES interferometer collected during the Ascension Island campaign over the tropical Atlantic. These two cases are very different with the Ascension Island case being much warmer and more humid than the CAMEX case. In total 13 different research groups participated with seven different line-by-line models. The results of this study indicated that in many spectral regions the models are capable of reproducing the observations to within the observed noise. In some spectral regions relatively large differences between the simulations and observations exist.


Eos, Transactions American Geophysical Union | 2007

Achieving satellite instrument calibration for climate change

George Ohring; Joe Tansock; William J. Emery; James J. Butler; Lawrence E. Flynn; Fuzhong Weng; Karen St. Germain; Bruce A. Wielicki; Changyong Cao; Mitchell D. Goldberg; Jack Xiong; Gerald T. Fraser; David Kunkee; David M. Winker; Laury Miller; Stephen G. Ungar; David C. Tobin; J. G. Anderson; David B. Pollock; Scott T. Shipley; Alan Thurgood; Greg Kopp; Philip E. Ardanuy; Tom Stone

For the most part, satellite observations of climate are not presently sufficiently accurate to establish a climate record that is indisputable and hence capable of determining whether and at what rate the climate is changing. Furthermore, they are insufficient for establishing a baseline for testing long-term trend predictions of climate models. Satellite observations do provide a clear picture of the relatively large signals associated with interannual climate variations such as El Nino-Southern Oscillation (ENSO), and they have also been used to diagnose gross inadequacies of climate models, such as their cloud generation schemes. However, satellite contributions to measuring long-term change have been limited and, at times, controversial, as in the case of differing atmospheric temperature trends derived from the U.S. National Oceanic and Atmospheric Administrations (NOAA) microwave radiometers.


Applied Optics | 2002

Thermodynamic product retrieval methodology and validation for NAST-I

Daniel K. Zhou; William L. Smith; Jun Li; H. B. Howell; Greg W. Cantwell; Allen M. Larar; Robert O. Knuteson; David C. Tobin; Henry E. Revercomb; Stephen A. Mango

The National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed (NAST) consists of two passive collocated cross-track scanning instruments, an infrared interferometer (NAST-I) and a microwave radiometer (NAST-M), that fly onboard high-altitude aircraft such as the NASA ER-2 at an altitude near 20 km. NAST-I provides relatively high spectral resolution (0.25-cm(-1)) measurements in the 645-2700-cm(-1) spectral region with moderate spatial resolution (a linear resolution equal to 13% of the aircraft altitude at nadir) cross-track scanning. We report the methodology for retrieval of atmospheric temperature and composition profiles from NAST-I radiance spectra. The profiles were determined by use of a statistical eigenvector regression algorithm and improved, as needed, by use of a nonlinear physical retrieval algorithm. Several field campaigns conducted under varied meteorological conditions have provided the data needed to verify the accuracy of the spectral radiance, the retrieval algorithm, and the scanning capabilities of this instrumentation. Retrieval examples are presented to demonstrate the ability to reveal fine-scale horizontal features with relatively high vertical resolution.


Journal of Atmospheric and Oceanic Technology | 2009

Intercalibration of Broadband Geostationary Imagers Using AIRS

Mathew M. Gunshor; Timothy J. Schmit; W. Paul Menzel; David C. Tobin

Abstract Geostationary simultaneous nadir observations (GSNOs) are collected for Earth Observing System (EOS) Atmospheric Infrared Sounder (AIRS) on board Aqua and a global array of geostationary imagers. The imagers compared in this study are on (Geostationary Operational Environmental Satellites) GOES-10, GOES-11, GOES-12, (Meteorological Satellites) Meteosat-8, Meteosat-9, Multifunctional Transport Satellite-IR (MTSAT-IR), and Fenguyun-2C (FY-2C). It has been shown that a single polar-orbiting satellite can be used to intercalibrate any number of geostationary imagers. Using a high-spectral-resolution infrared sensor, in this case AIRS, brings this method closer to an absolute reckoning of imager calibration accuracy based on laboratory measurements of the instrument’s spectral response. An intercalibration method is presented here, including a method of compensating for AIRS’ spectral gaps, along with results for approximately 22 months of comparisons. The method appears to work very well for most ban...


Journal of Quantitative Spectroscopy & Radiative Transfer | 1998

Impact of a new water vapor continuum and line shape model on observed high resolution infrared radiances

L. Larrabee Strow; David C. Tobin; W. Wallace McMillan; Scott E. Hannon; William L. Smith; Henry E. Revercomb; Robert O. Knuteson

Abstract Line-by-line calculations of up-welling atmospheric radiances are compared to clear-sky radiances observed with the University of Wisconsin High-resolution Interferometer Sounder (HIS). We concentrate on water emission in the 1400–1750 cm −1 region which is sensitive to the N 2 -broadened water continuum. This work applies our recently developed water continuum derived from new laboratory data to atmospheric emission measurements. The atmospheric state under clear-sky conditions was characterized with radiosonde and LIDAR observations. Radiances in-between absorption lines probe the lower troposphere, where the water vapor profiles are best characterized, allowing comparison of several different water continuum models. Closer to the centers of the absorption lines all models yield relatively large errors, most likely due to inaccuracies in the high altitude water vapor radiosonde measurements.

Collaboration


Dive into the David C. Tobin's collaboration.

Top Co-Authors

Avatar

Henry E. Revercomb

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Robert O. Knuteson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Fred A. Best

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Joe K. Taylor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

William L. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Steven Dutcher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Raymond K. Garcia

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lori Borg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Robert E. Holz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Daniel D. LaPorte

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge