Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred A. Best is active.

Publication


Featured researches published by Fred A. Best.


Journal of Atmospheric and Oceanic Technology | 2004

Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design

Robert O. Knuteson; Henry E. Revercomb; Fred A. Best; N. C. Ciganovich; Ralph G. Dedecker; T. P. Dirkx; S. C. Ellington; Wayne F. Feltz; Raymond K. Garcia; H. B. Howell; William L. Smith; John F. Short; D. C. Tobin

Abstract A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earths surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program. This paper emphasizes the key features of the UW-SSEC instrument design that contribute to meeting the AERI instrument requirements for the ARM Program. These features include a highly accurate radiometric calibration system, an instrument controller that provides continuous and autonomous operation, an extensive data acquisition system for monitoring calibration temperatures and instrument health, and a real-time data processing system. In particular, focus is placed on design issues crucial to meeting the ARM requirements for radiometric calibration, spectral cali...


Bulletin of the American Meteorological Society | 2013

Achieving Climate Change Absolute Accuracy in Orbit

Bruce A. Wielicki; David F. Young; M. G. Mlynczak; Kurt J. Thome; Stephen S. Leroy; James M. Corliss; J. G. Anderson; Chi O. Ao; Richard J. Bantges; Fred A. Best; Kevin W. Bowman; Helen E. Brindley; James J. Butler; William D. Collins; John Andrew Dykema; David R. Doelling; Daniel R. Feldman; Nigel P. Fox; Xianglei Huang; Robert E. Holz; Yi Huang; Zhonghai Jin; D. Jennings; David G. Johnson; K. Jucks; Seima Kato; Daniel Bernard Kirk-Davidoff; Robert O. Knuteson; Greg Kopp; David P. Kratz

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREOs inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earths thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...


Journal of Geophysical Research | 1999

Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26μm

D. C. Tobin; Fred A. Best; P. D. Brown; S. A. Clough; Ralph G. Dedecker; R. G. Ellingson; Raymond K. Garcia; H. B. Howell; Robert O. Knuteson; E. J. Mlawer; Henry E. Revercomb; J. F. Short; P. Van Delst; V. P. Walden

Earth loses energy to space in the form of longwave (or infrared) radiation. Much of this energy is radiated through the transparent portion of the water vapor rotational band from 17 to 33 μm (300 to 600 cm−1). Very few measurements have been made in this spectral region to characterize how water vapor absorbs and emits longwave radiation. An Atmospheric Emitted Radiance Interferometer (AERI) with extended longwave spectral coverage has been deployed at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice station 300 miles north of the Alaskan coast to measure downwelling radiances at wavelengths of 3 to 26 μm (380 to 3000 cm−1). The spectral and radiometric performance of the instrument, installation at the ice station, and initial observations are shown. Comparisons to line-by-line radiative transfer calculations for selected clear-sky cases are presented, and air-broadened water vapor continuum absorption coefficients are determined in the wing of the pure rotational band from 17 to 26 μm (380 to 600 cm−1). Comparisons of the coefficients with the widely used Clough Kneizys Davies (CKD) water vapor continuum model suggest empirical modifications to this model are necessary. Comparisons to laboratory measurements of Burch et al. [1974] made at room temperature suggests little or no temperature dependence of the continuum from 400 to 550 cm−1. Implications of these modifications on top-of-atmosphere and surface fluxes, as well as atmospheric cooling rates, are discussed.


Science | 1996

Solar and Thermal Radiation in Jupiter's Atmosphere: Initial Results of the Galileo Probe Net Flux Radiometer

Lawrence A. Sromovsky; Fred A. Best; A. D. Collard; Patrick M. Fry; Henry E. Revercomb; R. S. Freedman; Glenn S. Orton; J. L. Hayden; Martin G. Tomasko; Mark T. Lemmon

The Galileo probe net flux radiometer measured radiation within Jupiters atmosphere over the 125-kilometer altitude range between pressures of 0.44 bar and 14 bars. Evidence for the expected ammonia cloud was seen in solar and thermal channels down to 0.5 to 0.6 bar. Between 0.6 and 10 bars large thermal fluxes imply very low gaseous opacities and provide no evidence for a deep water cloud. Near 8 bars the water vapor abundance appears to be about 10 percent of what would be expected for a solar abundance of oxygen. Below 8 bars, measurements suggest an increasing water abundance with depth or a deep cloud layer. Ammonia appears to follow a significantly subsaturated profile above 3 bars. Unexpectedly high absorption of sunlight was found at wavelengths greater than 600 nanometers.


Advances in Space Research | 2004

Infrared land surface remote sensing using high spectral resolution aircraft observations

Robert O. Knuteson; Fred A. Best; Daniel H. DeSlover; Brian Osborne; Henry E. Revercomb; William L. Smith

Abstract A method for emissivity–temperature separation using high spectral resolution infrared observations is presented. An additional constraint is available with high spectral resolution observations that allow for the determination of an effective surface temperature and effective surface emissivity spectrum appropriate for advanced atmospheric temperature and water vapor sounders. The method is illustrated using observations from a high altitude aircraft over a ground truth site in North Central Oklahoma, USA.


Journal of the Atmospheric Sciences | 1995

Cirrus Cloud Properties Derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part I: The High Resolution Interferometer Sounder (HIS) Systems

William L. Smith; Henry E. Revercomb; Robert O. Knuteson; Fred A. Best; Ralph G. Dedecker; H. B. Howell; H. M. Woolf

Abstract The characteristics of the ER-2 aircraft and ground-based High Resolution Interferometer Sounder (HIS) instruments deployed during FIRE II are described. A few example spectra are given to illustrate the HIS cloud and molecular atmosphere remote sensing capabilities.


Space Science Reviews | 1992

Galileo Net Flux Radiometer experiment

Lawrence A. Sromovsky; Fred A. Best; Henry E. Revercomb; J. L. Hayden

The Galileo Net Flux Radiometer (NFR) is a Probe instrument designed to measure the vertical profile of upward and net radiation fluxes in five spectral bands spanning the range from solar to far infrared wavelengths. These unique measurements within Jupiter’s atmosphere, from which radiative heating and cooling profiles will be derived, will contribute to our understanding of Jovian atmospheric dynamics, to the detection of cloud layers and determination of their opacities, and to the estimation of water vapor abundance. The NFR uses an array of pyroelectric detectors and individual bandpass filters in a sealed detector package. The detector package and optics rotate as a unit to provide chopping between views of upward and downward radiation fluxes. This arrangement makes possible the measurement of small net fluxes in the presence of large ambient fluxes. A microprocessor-controlled electronics package handles instrument operation.


Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space | 2001

Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

Fred A. Best; Henry E. Revercomb; Gail E. Bingham; Robert O. Knuteson; David C. Tobin; Daniel D. LaPorte; William L. Smith

The NASA New Millennium Programs Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has bene developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.


SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation | 1996

Airborne and ground-based Fourier transform spectrometers for meteorology: HIS, AERI, and the new AERI-UAV

Henry E. Revercomb; William L. Smith; Fred A. Best; Jean Giroux; Daniel D. LaPorte; Robert O. Knuteson; Mark W. Werner; J. Anderson; Nick N. Ciganovich; Richard W. Cline; Scott D. Ellington; Ralph G. Dedecker; T. P. Dirkx; Raymond K. Garcia; H. Benjamin Howell

Broadband IR high spectral resolution observations of atmospheric emission provide key meteorological information related to atmospheric state parameters, cloud and surface spectral properties, and processes influencing radiative budgets and regional climate. Fourier transform spectroscopy (FTS), or Michelson interferometry, has proven to be an exceptionally effective approach for making these IR spectral observations with the high radiometric accuracy necessary for weather and climate applications, and are currently developing a new airborne instrument for use on an unmanned aerospace vehicle (UAV). These include the high- resolution interferometer sounder aircraft instrument developed for the NASA high altitude ER2, the atmospheric emitted radiance interferometer (AERI) and the new AERI-UAV for application in the DOE atmospheric radiation measurement program. This paper focuses on the design of the AERI-UAV which is novel in many respects. The efforts will help speed the day when this valuable instrumentation is used to improve remote sensing and radiative budget observations from space.


Proceedings of SPIE | 2006

A geosynchronous imaging Fourier transform spectrometer (GIFTS) for hyperspectral atmospheric remote sensing: instrument overview and preliminary performance results

John D. Elwell; Gregory W. Cantwell; Deron Scott; Roy W. Esplin; Glen Hansen; S. M. Jensen; Mark Jensen; Steven Brown; Lorin J. Zollinger; V. A. Thurgood; Mark P. Esplin; Ronald J. Huppi; Gail E. Bingham; Henry E. Revercomb; Fred A. Best; D. C. Tobin; Joe K. Taylor; Robert O. Knuteson; William L. Smith; Robert A. Reisse; Ronald Hooker

The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) was developed for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. This paper discusses the GIFTS measurement requirements and the technology utilized by the GIFTS sensor to provide the required system performance. Also presented are preliminary results from the recently completed calibration of the instrument. The GIFTS NMP mission challenge was to demonstrate new and emerging sensor and data processing technologies to make revolutionary improvements in meteorological observational capability and forecasting accuracy using atmospheric imaging and hyperspectral sounding methods. The GIFTS sensor is an imaging FTS with programmable spectral resolution and spatial scene selection, allowing radiometric accuracy and atmospheric sounding precision to be traded in near-real time for area coverage. System sensitivity is achieved through the use of a cryogenic Michelson interferometer and two large-area, IR focal plane detector arrays. Due to funding limitations, the GIFTS sensor module was completed as an engineering demonstration unit, which can be upgraded for flight qualification. Capability to meet the next generation geosynchronous sounding requirements has been successfully demonstrated through thermal vacuum testing and rigorous IR calibration activities.

Collaboration


Dive into the Fred A. Best's collaboration.

Top Co-Authors

Avatar

Henry E. Revercomb

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Robert O. Knuteson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David C. Tobin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Joe K. Taylor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

William L. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Raymond K. Garcia

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Douglas P. Adler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Daniel D. LaPorte

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Scott D. Ellington

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Steven Dutcher

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge