Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Durrant is active.

Publication


Featured researches published by David Durrant.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction

Anindita Das; David Durrant; Clint Mitchell; Eric Mayton; Nicholas N. Hoke; Fadi N. Salloum; Margaret A. Park; Ian Z. Qureshi; Ray M. Lee; Paul Dent; Rakesh C. Kukreja

We have shown that the potent phosphodiesterase-5 (PDE-5) inhibitor sildenafil (Viagra) induces a powerful effect on reduction of infarct size following ischemia/reperfusion injury and improvement of left ventricular dysfunction in the failing heart after myocardial infarction or doxorubicin (DOX) treatment. In the present study, we further investigated the potential effects of sildenafil on improving antitumor efficacy of DOX in prostate cancer. Cotreatment with sildenafil enhanced DOX-induced apoptosis in PC-3 and DU145 prostate cancer cells, which was mediated by enhanced generation of reactive oxygen species, up-regulation of caspase-3 and caspase-9 activities, reduced expression of Bcl-xL, and phosphorylation of Bad. Overexpression of Bcl-xL or dominant negative caspase 9 attenuated the synergistic effect of sildenafil and DOX on prostate cancer cell killing. Furthermore, treatment with sildenafil and DOX in mice bearing prostate tumor xenografts resulted in significant inhibition of tumor growth. The reduced tumor size was associated with amplified apoptotic cell death and increased expression of activated caspase 3. Doppler echocardiography showed that sildenafil treatment ameliorated DOX-induced left ventricular dysfunction. In conclusion, these results provide provocative evidence that sildenafil is both a powerful sensitizer of DOX-induced killing of prostate cancer while providing concurrent cardioprotective benefit.


Pharmacology & Therapeutics | 2015

PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.

Anindita Das; David Durrant; Fadi N. Salloum; Lei Xi; Rakesh C. Kukreja

The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients.


Journal of Pharmacology and Experimental Therapeutics | 2010

Long-Acting Phosphodiesterase-5 Inhibitor Tadalafil Attenuates Doxorubicin-Induced Cardiomyopathy without Interfering with Chemotherapeutic Effect

Saisudha Koka; Anindita Das; Shu-Guang Zhu; David Durrant; Lei Xi; Rakesh C. Kukreja

Doxorubicin (DOX) is one of the most effective anticancer drugs. However, its cardiotoxicity remains a clinical concern that severely restricts its therapeutic usage. We designed this study to investigate whether tadalafil, a long-acting phosphodiesterase-5 (PDE-5) inhibitor, protects against DOX-induced cardiotoxicity. We also sought to delineate the cellular and molecular mechanisms underlying tadalafil-induced cardioprotection. Male CF-1 outbred mice were randomized into three groups (n = 15–24/group) to receive either saline (0.2 ml i.p.), DOX (15 mg/kg, given by a single intraperitoneal injection), or tadalafil (4 mg/kg p.o. daily for 9 days) plus DOX. Left ventricular function was subsequently assessed by transthoracic echocardiography and Millar conductance catheter. Cardiac contractile function was impaired by DOX, and it was significantly improved by cotreatment with tadalafil. Tadalafil attenuated DOX-induced apoptosis and depletion of prosurvival proteins, including Bcl-2 and GATA-4, in myocardium. Cardiac oxidative stress was attenuated and antioxidant capacity was enhanced by tadalafil possibly via up-regulation of mitochondrial superoxide dismutase (MnSOD). Moreover, the tadalafil-treated group demonstrated increased cardiac cGMP level and protein kinase G (PKG) activity. Tadalafil did not interfere with the efficacy of DOX in killing human osteosarcoma cells in vitro or its antitumor effect in vivo in tumor xenograft model. We conclude that tadalafil improved left ventricular function and prevented cardiomyocyte apoptosis in DOX-induced cardiomyopathy through mechanisms involving up-regulation of cGMP, PKG activity, and MnSOD level without interfering with the chemotherapeutic benefits of DOX.


Journal of Biological Chemistry | 2014

Mammalian Target of Rapamycin (mTOR) Inhibition with Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice POTENTIAL ROLE OF ATTENUATED OXIDATIVE STRESS AND ALTERED CONTRACTILE PROTEIN EXPRESSION

Anindita Das; David Durrant; Saisudha Koka; Fadi N. Salloum; Lei Xi; Rakesh C. Kukreja

Background: Elevated mammalian target of rapamycin (mTOR) signaling contributes to diabetic complications. Results: mTOR inhibitor, rapamycin, improves metabolic status and cardiac function, attenuates oxidative stress, and alters antioxidant and contractile protein expression in type 2 diabetic mice. Conclusion: Rapamycin may provide metabolic and cardiac benefits in diabetic mice. Significance: mTOR inhibition may be an attractive novel therapeutic strategy for diabetes-related complications. Elevated mammalian target of rapamycin (mTOR) signaling contributes to the pathogenesis of diabetes, with increased morbidity and mortality, mainly because of cardiovascular complications. Because mTOR inhibition with rapamycin protects against ischemia/reperfusion injury, we hypothesized that rapamycin would prevent cardiac dysfunction associated with type 2 diabetes (T2D). We also investigated the possible mechanisms and novel protein targets involved in rapamycin-induced preservation of cardiac function in T2D mice. Adult male leptin receptor null, homozygous db/db, or wild type mice were treated daily for 28 days with vehicle (5% DMSO) or rapamycin (0.25 mg/kg, intraperitoneally). Cardiac function was monitored by echocardiography, and protein targets were identified by proteomics analysis. Rapamycin treatment significantly reduced body weight, heart weight, plasma glucose, triglyceride, and insulin levels in db/db mice. Fractional shortening was improved by rapamycin treatment in db/db mice. Oxidative stress as measured by glutathione levels and lipid peroxidation was significantly reduced in rapamycin-treated db/db hearts. Rapamycin blocked the enhanced phosphorylation of mTOR and S6, but not AKT in db/db hearts. Proteomic (by two-dimensional gel and mass spectrometry) and Western blot analyses identified significant changes in several cytoskeletal/contractile proteins (myosin light chain MLY2, myosin heavy chain 6, myosin-binding protein C), glucose metabolism proteins (pyruvate dehydrogenase E1, PYGB, Pgm2), and antioxidant proteins (peroxiredoxin 5, ferritin heavy chain 1) following rapamycin treatment in db/db heart. These results show that chronic rapamycin treatment prevents cardiac dysfunction in T2D mice, possibly through attenuation of oxidative stress and alteration of antioxidants and contractile as well as glucose metabolic protein expression.


Journal of Molecular and Cellular Cardiology | 2012

Rapamycin protects against myocardial ischemia–reperfusion injury through JAK2–STAT3 signaling pathway

Anindita Das; Fadi N. Salloum; David Durrant; Ramzi Ockaili; Rakesh C. Kukreja

Rapamycin (Sirolimus®) is used to prevent rejection of transplanted organs and coronary restenosis. We reported that rapamycin induced cardioprotection against ischemia-reperfusion (I/R) injury through opening of mitochondrial K(ATP) channels. However, signaling mechanisms in rapamycin-induced cardioprotection are currently unknown. Considering that STAT3 is protective in the heart, we investigated the potential role of this transcription factor in rapamycin-induced protection against (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25mg/kg, i.p.) or vehicle (DMSO) with/without inhibitor of JAK2 (AG-490) or STAT3 (stattic). One hour later, the hearts were subjected to I/R either in Langendorff mode or in situ ligation of left coronary artery. Additionally, primary murine cardiomyocytes were subjected to simulated ischemia-reoxygenation (SI/RO) injury in vitro. For in situ targeted knockdown of STAT3, lentiviral vector containing short hairpin RNA was injected into the left ventricle 3 weeks prior to initiating I/R injury. Infarct size, cardiac function, and cardiomyocyte necrosis and apoptosis were assessed. Rapamycin reduced infarct size, improved cardiac function following I/R, and limited cardiomyocyte necrosis as well as apoptosis following SI/RO which were blocked by AG-490 and stattic. In situ knock-down of STAT3 attenuated rapamycin-induced protection against I/R injury. Rapamycin triggered unique cardioprotective signaling including phosphorylation of ERK, STAT3, eNOS and glycogen synthase kinase-3ß in concert with increased prosurvival Bcl-2 to Bax ratio. Our data suggest that JAK2-STAT3 signaling plays an essential role in rapamycin-induced cardioprotection. We propose that rapamycin is a novel and clinically relevant pharmacological strategy to target STAT3 activation for treatment of myocardial infarction.


Circulation-cardiovascular Genetics | 2014

Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice

Stefano Toldo; Anindita Das; Eleonora Mezzaroma; Vinh Q Chau; Carlo Marchetti; David Durrant; Arun Samidurai; Benjamin W. Van Tassell; Chang Yin; Ramzi Ockaili; Navin Vigneshwar; Nitai D. Mukhopadhyay; Rakesh C. Kukreja; Antonio Abbate; Fadi N. Salloum

Background—Maintaining physiological levels of hydrogen sulfide during ischemia is necessary to limit injury to the heart. Because of the anti-inflammatory effects of hydrogen sulfide, we proposed that the hydrogen sulfide donor, sodium sulfide (Na2S), would attenuate myocardial injury through upregulation of protective microRNA-21 (miR-21) and suppression of the inflammasome, a macromolecular structure that amplifies inflammation and mediates further injury. Methods and Results—Na2S-induced miR-21 expression was measured by quantitative polymerase chain reaction in adult primary rat cardiomyocytes and in the mouse heart. We measured inflammasome formation and activity in cardiomyocytes challenged with lipopolysaccharide and ATP or simulated ischemia/reoxygenation and in the heart after regional myocardial ischemia/reperfusion, in the presence or absence of Na2S. To assess the direct anti-inflammatory effects of hydrogen sulfide in vivo, we used a peritonitis model by way of intraperitoneal injection of zymosan A. Na2S attenuated inflammasome formation and activity, measured by counting cytoplasmic aggregates of the scaffold protein apoptosis speck-like protein containing a caspase-recruitment domain (−57%) and caspase-1 activity (−50%) in isolated cardiomyocytes and in the mouse heart (all P<0.05). Na2S also inhibited apoptosis (−38%) and necrosis (−43%) in cardiomyocytes in vitro and reduced myocardial infarct size (−63%) after ischemia/reperfusion injury in vivo (all P<0.05). These protective effects were absent in cells treated with the miR-21 eraser, antagomiR-21, and in miR-21 knockout mice. Na2S also limited the severity of inflammasome-dependent inflammation in the model of peritonitis (P<0.05) in wild-type but not in miR-21 knockout mice. Conclusions—Na2S induces cardioprotective effects through miR-21–dependent attenuation of ischemic and inflammatory injury in cardiomyocytes.


PLOS ONE | 2012

Anti-Inflammatory and Cardioprotective Effects of Tadalafil in Diabetic Mice

Amit Varma; Anindita Das; Nicholas N. Hoke; David Durrant; Fadi N. Salloum; Rakesh C. Kukreja

Background Insulin resistance impairs nitric oxide (NO) bioavailability and obesity promotes a state of chronic inflammation and damages the vascular endothelium. Phosphodiesterase-5 inhibitors restore NO signaling and may reduce circulating inflammatory markers, and improve metabolic parameters through a number of mechanisms. We hypothesized that daily administration of the PDE-5 inhibitor, tadalafil (TAD) will attenuate inflammation, improve fasting plasma glucose and triglyceride levels, body weight, and reduce infarct size after ischemia/reperfusion injury in obese, diabetic mice. Methods Twenty leptin receptor null (db/db) mice underwent treatment with TAD (1 mg/Kg) or 10% DMSO for 28 days. Body weight and fasting plasma glucose levels were determined weekly. Upon completion, hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in a Langendorff model. Plasma samples were taken for cytokine analysis and fasting triglyceride levels. Infarct size was measured using computer morphometry of tetrazolium stained sections. Additionally, ventricular cardiomyocytes were isolated and subjected to 40 min of simulated ischemia and reoxygenation. Necrosis was determined using trypan blue exclusion and LDH release assay and apoptosis was assessed by TUNEL assay after 1 h or 18 h of reoxygenation, respectively. Results Treatment with TAD caused a reduction in infarct size in the diabetic heart (23.2±1.5 vs. 47.8±3.7%, p<0.01, n = 6/group), reduced fasting glucose levels (292±31.8 vs. 511±19.3 mg/dL, p<0.001) and fasting triglycerides (43.3±21 vs. 129.7±29 mg/dL, p<0.05) as compared to DMSO, however body weight was not significantly reduced. Circulating tumor necrosis factor-α and interleukin-1β were reduced after treatment compared to control (257±16.51 vs. 402.3±17.26 and 150.8±12.55 vs. 264±31.85 pg/mL, respectively; P<0.001) Isolated cardiomyocytes from TAD-treated mice showed reduced apoptosis and necrosis. Conclusion We have provided the first evidence that TAD therapy ameliorates circulating inflammatory cytokines and chemokines in a diabetic animal model while improving fasting glucose levels and reducing infarct size following ischemia-reperfusion injury in the heart.


Journal of Cellular Biochemistry | 2007

Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-δ induces its activation and facilitates mitochondrial targeting of tBid

Yongwen He; Jihua Liu; Douglas Grossman; David Durrant; Trevor W. Sweatman; Leonard Lothstein; Raquel F. Epand; Richard M. Epand; Ray M. Lee

Phospholipid scramblase 3 (PLS3) is a member of the phospholipid scramblase family present in mitochondria. PLS3 plays an important role in regulation of mitochondrial morphology, respiratory function, and apoptotic responses. PLS3 is phosphorylated by PKC‐δ at Thr21 and is the mitochondrial target of PKC‐δ‐induced apoptosis. Cells with overexpression of PLS3, but not the phosphoinhibitory mutant PLS3(T21A), are more susceptible to apoptosis induced by AD198, an extranuclear targeted anthracycline that activates PKC‐δ. Here we report that the phosphomimetic mutant of PLS3(T21D) by itself can induce apoptosis in HeLa cells. Using proteoliposomes with addition of pyrene‐labeled phosphatidylcholine (PC) at the outer leaflet, we measured the lipid flip‐flop activity of PLS3 and its phosphorylation mutant. PLS3(T21D) is more potent than wild‐type PLS3 or PLS3(T21A) to transfer pyrene‐PC from the outer leaflet to the inner leaflet of liposomes. Based on our previous finding that PLS3 enhances tBid‐induced mitochondrial damages, we tested the hypothesis that PLS3 enhances cardiolipin translocation to mitochondrial surface and facilitates tBid targeting. Fluorescein‐labeled tBid(G94E) was used as a probe to quantify cardiolipin on the surface of mitochondria. Mitochondria from cells treated with AD198 or cells expressing PLS3(T21D) had a higher level of tBid‐binding capacity than control cells or cells expressing wild‐type PLS3. These findings indicate that phosphorylation of PLS3 by PKC‐δ induces PLS3 activation to facilitate mitochondrial targeting of tBid and apoptosis. J. Cell. Biochem. 101:1210–1221, 2007.


Nitric Oxide | 2012

Dietary Inorganic Nitrate Alleviates Doxorubicin Cardiotoxicity: Mechanisms and Implications

Lei Xi; Shu-Guang Zhu; Anindita Das; Qun Chen; David Durrant; Daniel C. Hobbs; Edward J. Lesnefsky; Rakesh C. Kukreja

Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.


Molecular Pharmacology | 2014

Phosphodiesterase 5 Inhibitors Enhance Chemotherapy Killing in Gastrointestinal/Genitourinary Cancer Cells

Laurence Booth; Jane L. Roberts; Nichola Cruickshanks; Adam Conley; David Durrant; Anindita Das; Paul B. Fisher; Rakesh C. Kukreja; Steven Grant; Andrew Poklepovic; Paul Dent

The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill gastrointestinal/genitourinary cancer cells. In bladder cancer cells, regardless of H-RAS mutational status, at clinically achievable doses, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/mitomycin C/gemcitabine/cisplatin/paclitaxel to cause cell death. In pancreatic tumor cells expressing mutant active K-RAS, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/gemcitabine/paclitaxel to cause cell death. The most potent PDE5 inhibitor was sildenafil. Knock down of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of cellular FLICE-like inhibitory protein-short did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with sildenafil. Overexpression of B-cell lymphoma–extra large suppressed individual and combination drug toxicities. Knock down of CD95 or Fas-associated death domain protein suppressed drug combination toxicity. Combination toxicity was also abolished by necrostatin or receptor interacting protein 1 knock down. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy, which was maximal at ∼24 hour posttreatment, and 3-methyl adenine or knock down of Beclin1 suppressed drug combination lethality by ∼50%. PDE5 inhibitors enhanced and prolonged the induction of DNA damage as judged by Comet assays and γhistone 2AX (γH2AX) and checkpoint kinase 2 (CHK2) phosphorylation. Knock down of ataxia telangiectasia mutated suppressed γH2AX and CHK2 phosphorylation and enhanced drug combination lethality. Collectively our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for gastrointestinal/genitourinary cancers represents a novel modality.

Collaboration


Dive into the David Durrant's collaboration.

Top Co-Authors

Avatar

Anindita Das

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Rakesh C. Kukreja

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fadi N. Salloum

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ray M. Lee

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Xi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Tripathi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Glen E. Kellogg

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ramzi Ockaili

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Saisudha Koka

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge