Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Nagel is active.

Publication


Featured researches published by David E. Nagel.


Ecological Applications | 2010

Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network

Daniel J. Isaak; Charles H. Luce; Bruce E. Rieman; David E. Nagel; Erin E. Peterson; Dona L. Horan; Sharon Parkes; Gwynne L. Chandler

Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is difficult in complex terrains given diverse microclimates and mediation of stream heat budgets by local conditions. We compiled a stream temperature database (n = 780) for a 2500-km river network in central Idaho to assess possible trends in summer temperatures and thermal habitat for two native salmonid species from 1993 to 2006. New spatial statistical models that account for network topology were parameterized with these data and explained 93% and 86% of the variation in mean stream temperatures and maximas, respectively. During our study period, basin average mean stream temperatures increased by 0.38 degrees C (0.27 degrees C/decade), and maximas increased by 0.48 degrees C (0.34 degrees C/decade), primarily due to long-term (30-50 year) trends in air temperatures and stream flows. Radiation increases from wildfires accounted for 9% of basin-scale temperature increases, despite burning 14% of the basin. Within wildfire perimeters, however, stream temperature increases were 2-3 times greater than basin averages, and radiation gains accounted for 50% of warming. Thermal habitat for rainbow trout (Oncorhynchus mykiss) was minimally affected by temperature increases, except for small shifts towards higher elevations. Bull trout (Salvelinus confluentus), in contrast, were estimated to have lost 11-20% (8-16%/decade) of the headwater stream lengths that were cold enough for spawning and early juvenile rearing, with the largest losses occurring in the coldest habitats. Our results suggest that a warming climate has begun to affect thermal conditions in streams and that impacts to biota will be specific to both species and context. Where species are at risk, conservation actions should be guided based on considerations of restoration opportunity and future climatic effects. To refine predictions based on thermal effects, more work is needed to understand mechanisms associated with biological responses, climate effects on other habitat features, and habitat configurations that confer population resilience.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity

Daniel J. Isaak; Michael K. Young; Charles H. Luce; Steven W. Hostetler; Seth J. Wenger; Erin E. Peterson; Jay M. Ver Hoef; Matthew C. Groce; Dona L. Horan; David E. Nagel

Significance Many studies predict climate change will cause widespread extinctions of flora and fauna in mountain environments because of temperature increases, enhanced environmental variability, and invasions by nonnative species. Cold-water organisms are thought to be at particularly high risk, but most predictions are based on small datasets and imprecise surrogates for water temperature trends. Using large stream temperature and biological databases, we show that thermal habitat in mountain streams is highly resistant to temperature increases and that many populations of cold-water species exist where they are well-buffered from climate change. As a result, there is hope that many native species dependent on cold water can persist this century and mountain landscapes will play an important role in that preservation. The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.


PLOS ONE | 2016

Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams

Michael K. Young; Daniel J. Isaak; Kevin S. McKelvey; Taylor M. Wilcox; Kristine L. Pilgrim; Kellie J. Carim; Matthew R. Campbell; Matthew P. Corsi; Dona L. Horan; David E. Nagel; Michael K. Schwartz

Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78–0.86; classification success, 72–82%; 10-fold cross validation, 70–82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5–74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.


Water Resources Research | 2017

The NorWeST Summer Stream Temperature Model and Scenarios for the Western U.S.: A Crowd-Sourced Database and New Geospatial Tools Foster a User Community and Predict Broad Climate Warming of Rivers and Streams

Daniel J. Isaak; Seth J. Wenger; Erin E. Peterson; Jay M. Ver Hoef; David E. Nagel; Charles H. Luce; Steven W. Hostetler; Jason B. Dunham; Brett B. Roper; Sherry P. Wollrab; Gwynne L. Chandler; Dona L. Horan; Sharon Parkes-Payne

Thermal regimes are fundamental determinants of aquatic ecosystems, which makes description and prediction of temperatures critical during a period of rapid global change. The advent of inexpensive temperature sensors dramatically increased monitoring in recent decades, and although most monitoring is done by individuals for agency-specific purposes, collectively these efforts constitute a massive distributed sensing array that generates an untapped wealth of data. Using the framework provided by the National Hydrography Dataset, we organized temperature records from dozens of agencies in the western U.S. to create the NorWeST database that hosts >220,000,000 temperature recordings from >22,700 stream and river sites. Spatial-stream-network models were fit to a subset of those data that described mean August water temperatures (AugTw) during 63,641 monitoring site-years to develop accurate temperature models (r2 = 0.91; RMSPE = 1.10°C; MAPE = 0.72°C), assess covariate effects, and make predictions at 1 km intervals to create summer climate scenarios. AugTw averaged 14.2°C (SD = 4.0°C) during the baseline period of 1993–2011 in 343,000 km of western perennial streams but trend reconstructions also indicated warming had occurred at the rate of 0.17°C/decade (SD = 0.067°C/decade) during the 40 year period of 1976–2015. Future scenarios suggest continued warming, although variation will occur within and among river networks due to differences in local climate forcing and stream responsiveness. NorWeST scenarios and data are available online in user-friendly digital formats and are widely used to coordinate monitoring efforts among agencies, for new research, and for conservation planning.


Archive | 2014

A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

David E. Nagel; John M. Buffington; Sharon Parkes; Seth J. Wenger; Jaime R. Goode

Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to generate results at subbasin scales (8 digit hydrologic unit). User-defined parameters allow results to be tailored to specific applications and landscapes. Field data were sampled to verify geomorphic characteristics of valley types identified by the program, and a detailed accuracy assessment was conducted to quantify the reliability of the algorithm output.


Archive | 2018

Effects of Climate Change on Cold-Water Fish in the Northern Rockies

Michael K. Young; Daniel J. Isaak; Scott Spaulding; Cameron Thomas; Scott Barndt; Matthew C. Groce; Dona L. Horan; David E. Nagel

Decreased snowpack with climate warming will shift the timing of peak streamflows, decrease summer low flows, and in combination with higher air temperature, increase stream temperatures, all of which will reduce the vigor of cold-water fish species. Abundance and distribution of cutthroat trout and especially bull trout will be greatly reduced, although effects will differ by location as a function of both stream temperature and competition from non-native fish species. Increased wildfire will add sediment to streams, increase peak flows and channel scouring, and raise stream temperature by removing vegetation.


Transactions of The American Fisheries Society | 2007

Anticipated Climate Warming Effects on Bull Trout Habitats and Populations Across the Interior Columbia River Basin

Bruce E. Rieman; Daniel J. Isaak; Susan B. Adams; Dona L. Horan; David E. Nagel; Charles H. Luce; Deborah L. Myers


Global Change Biology | 2015

The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century

Daniel J. Isaak; Michael K. Young; David E. Nagel; Dona L. Horan; Matthew C. Groce


Canadian Journal of Fisheries and Aquatic Sciences | 2011

Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charles H. Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler


Hydrological Processes | 2013

Potential effects of climate change on streambed scour and risks to salmonid survival in snow-dominated mountain basins†

Jaime R. Goode; John M. Buffington; Daniele Tonina; Daniel J. Isaak; Russell F. Thurow; Seth J. Wenger; David E. Nagel; Charlie Luce; Doerthe Tetzlaff; Chris Soulsby

Collaboration


Dive into the David E. Nagel's collaboration.

Top Co-Authors

Avatar

Daniel J. Isaak

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Charles H. Luce

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Dona L. Horan

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Gwynne L. Chandler

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Erin E. Peterson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Rieman

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Michael K. Young

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay M. Ver Hoef

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Brett B. Roper

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge