Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Naugle is active.

Publication


Featured researches published by David E. Naugle.


BioScience | 2005

Vulnerability of Northern Prairie Wetlands to Climate Change

W. Carter Johnson; Bruce V. Millett; Tagir G. Gilmanov; Richard A. Voldseth; Glenn R. Guntenspergen; David E. Naugle

Abstract The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continents ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future.


Journal of Wildlife Management | 2007

Greater Sage‐Grouse Population Response to Energy Development and Habitat Loss

Brett L. Walker; David E. Naugle; Kevin E. Doherty

Abstract Modification of landscapes due to energy development may alter both habitat use and vital rates of sensitive wildlife species. Greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, have experienced rapid, widespread changes to their habitat due to recent coal-bed natural gas (CBNG) development. We analyzed lek-count, habitat, and infrastructure data to assess how CBNG development and other landscape features influenced trends in the numbers of male sage-grouse observed and persistence of leks in the PRB. From 2001 to 2005, the number of males observed on leks in CBNG fields declined more rapidly than leks outside of CBNG. Of leks active in 1997 or later, only 38% of 26 leks in CBNG fields remained active by 2004–2005, compared to 84% of 250 leks outside CBNG fields. By 2005, leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG. Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat within 6.4 km of the lek. After controlling for habitat, we found support for negative effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag between CBNG development and lek disappearance. Current lease stipulations that prohibit development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure lek persistence and may result in impacts to breeding populations over larger areas. Seasonal restrictions on drilling and construction do not address impacts caused by loss of sagebrush and incursion of infrastructure that can affect populations over long periods of time. Regulatory agencies may need to increase spatial restrictions on development, industry may need to rapidly implement more effective mitigation measures, or both, to reduce impacts of CBNG development on sage-grouse populations in the PRB.


Journal of Wildlife Management | 2008

Greater Sage-Grouse Winter Habitat Selection and Energy Development

Kevin E. Doherty; David E. Naugle; Brett L. Walker; Jon M. Graham

Abstract Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection based on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. The strength of habitat selection between sage-grouse and sagebrush was strongest at a 4-km2 scale. Sage-grouse avoided coniferous habitats at a 0.65-km2 scale and riparian areas at a 4-km2 scale. A roughness index showed that sage-grouse selected gentle topography in winter. After controlling for vegetation and topography, the addition of a variable that quantified the density of CBNG wells within 4 km2 improved model fit by 6.66 Akaikes Information Criterion points (Akaike wt = 0.965). The odds ratio for each additional well in a 4-km2 area (0.877; 95% CI = 0.834–0.923) indicated that sage-grouse avoid CBNG development in otherwise suitable winter habitat. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km2 area, compared to those that had the maximum density of 12.3 wells per 4 km2 allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R2 = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.


Wetlands | 2000

A LANDSCAPE APPROACH TO CONSERVING WETLAND BIRD HABITAT IN THE PRAIRIE POTHOLE REGION OF EASTERN SOUTH DAKOTA

David E. Naugle; Rex R. Johnson; Michael E. Estey; Kenneth F. Higgins

Resource managers confronted with preserving ecosystems for prairie wetland birds in fragmented landscapes require landscape studies that direct conservation efforts over broad geographic regions. We investigated the role of local and landscape factors affecting habitat suitability by integrating remotely sensed wetland and land-cover data with wetland bird habitat models. We linked habitat models with locations of easement and fee-title wetlands to evaluate spatial location and extent of protected, suitable habitat. We also simulated impacts of the loss of small wetlands on suitability of larger wetlands for mobile species that use multiple wetlands. Lastly, we evaluated the efficacy of waterfowl habitat programs in preserving suitable habitat for nongame wetland bird species to recommend strategies for maximizing regional landscape connectivity. Regional databases constructed for this study indicate that easement and fee-title tracts encompass 13.9% (1.2 million ha) of land area and protect 19.8% of the wetlands in eastern South Dakota, USA Proportion of protected wetlands is highest for semi-permanent (32.3%), intermediate for seasonal (25.6%), and lowest for temporary wetlands (15.8%). A stratified, two-stage cluster sample was used to randomly select 834 semi-permanent and seasonal wetlands that were surveyed for birds in 1995 and 1996. Logistic analyses indicate that habitat suitability for some species (e.g., Virginia rail, pied-billed grebe) is related to local vegetation conditions within wetlands, while suitability for others (e.g., northern pintail, black tern) is related to landscape structure at larger scales. As a result, unfragmented prairie wetland landscapes (i.e., areas with wetland complexes embedded within upland grasslands) provide habitat for more species than isolated wetlands in tillage fields. Models developed from survey wetlands were used to classify habitat suitability for all semi-permanent and seasonal wetlands in eastern South Dakota. Small wetlands are critical components of the surrounding landscape that influence habitat suitability of larger wetlands. Models used to reclassify suitability of larger remaining wetlands after small wetlands (<0.5 ha) were removed indicate that species most vulnerable to loss of small wetlands are vagile species that exploit resources over broad spatial scales. Number of wetlands suitable for northern pintails, a mobile species that uses multiple wetlands within a season, decreased 20.7% when wetlands <0.5 ha were removed. Historic paradigms dictating waterfowl habitat protection efforts also have conserved habitat for nongame bird species. Modern paradigms that acknowledge the importance of small shallow wetlands to breeding waterfowl have shifted the focus of protection towards preserving habitat for species that occupy more abundant seasonal wetlands. Cessation of protection efforts would result in further fragmentation of regional wetland landscapes. We recommend that wetlands be acquired not only to consolidate suitable habitat within protected core areas but also to ensure that core areas coalesce to preserve connectivity among regional wetland landscapes.


BioScience | 2010

Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate

W. Carter Johnson; Brett Werner; Glenn R. Guntenspergen; Richard A. Voldseth; Bruce V. Millett; David E. Naugle; Mirela G. Tulbure; Rosemary W.H. Carroll; John C. Tracy; Craig Olawsky

The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.


The Auk | 2009

Area Sensitivity in North American Grassland Birds: Patterns and Processes

Christine A. Ribic; Rolf R. Koford; James R. Herkert; Douglas H. Johnson; Neal D. Niemuth; David E. Naugle; Kristel K. Bakker; David W. Sample; Rosalind B. Renfrew

Grassland birds have declined more than other bird groups in North America in the past 35–40 years (Vickery and Herkert 2001, Sauer et al. 2008), prompting a wide variety of research aimed at understanding these declines, as well as conservation programs trying to reverse the declines (Askins et al. 2007). Area sensitivity, whereby the pattern of a species’ occurrence and density increases with patch area (Robbins et al. 1989), has been invoked as an important issue in grassland-bird conservation, and understanding the processes that drive area sensitivity in grassland birds is a major conservation need (Vickery and Herkert 2001). Here, we review the literature on North American grassland bird species that is relevant to the following questions. (1) What is the


PLOS ONE | 2009

Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

Holly E. Copeland; Kevin E. Doherty; David E. Naugle; Amy Pocewicz; Joseph M. Kiesecker

Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation.


Conservation Biology | 2008

Predicting Risk of Habitat Conversion in Native Temperate Grasslands

Scott E. Stephens; Johann Walker; Darin R. Blunck; Aneetha Jayaraman; David E. Naugle; James K. Ringelman; Aaron J. Smith

Native grasslands that support diverse populations of birds are being converted to cropland at an increasing rate in the Prairie Pothole Region of North America. Although limited funding is currently available to mitigate losses, accurate predictions of probability of conversion would increase the efficiency of conservation measures. We studied conversion of native grassland to cropland in the Missouri Coteau region of North and South Dakota (U.S.A.) during 1989-2003. We estimated the probability of conversion of native grassland to cropland with satellite imagery and logistic regression models that predicted risk of conversion and by comparing the overlap between areas of high biological value and areas most vulnerable to conversion. Annualized probability of conversion was 0.004, and 36,540 ha of native grassland were converted to cropland during the period of our study. Our predictive models fit the data and correctly predicted 70% of observed conversions of grassland. Probability of conversion varied spatially and was correlated with landscape features like amount of surrounding grassland, slope, and soil productivity. Tracts of high biological value were not always at high risk of conversion. We concluded the most biologically valuable areas that are most vulnerable to conversion should be prioritized for conservation. This approach can be applied broadly to other systems and offers great utility for implementing conservation in areas with spatially variable biological value and probability of conversion.


PLOS ONE | 2011

Win-Win for Wind and Wildlife: a Vision to Facilitate Sustainable Development

Joseph M. Kiesecker; Jeffrey S. Evans; Joe Fargione; Kevin E. Doherty; Kerry R. Foresman; Thomas H. Kunz; David E. Naugle; Nathan P. Nibbelink; Neal D. Niemuth

Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.


Science | 2015

Ecosystem services lost to oil and gas in North America

Brady W. Allred; W. Kolby Smith; Dirac Twidwell; Julia H. Haggerty; Steven W. Running; David E. Naugle; Samuel D. Fuhlendorf

Net primary production reduced in crop and rangelands Advanced technologies in oil and gas extraction coupled with energy demand have encouraged an average of 50,000 new wells per year throughout central North America since 2000. Although similar to past trends (see the graph, this page), the space and infrastructure required for horizontal drilling and high-volume hydraulic fracturing are transforming millions of hectares of the Great Plains into industrialized landscapes, with drilling projected to continue (1, 2). Although this development brings economic benefits (3) and expectations of energy security, policy and regulation give little attention to trade-offs in the form of lost or degraded ecosystem services (4). It is the scale of this transformation that is important, as accumulating land degradation can result in continental impacts that are undetectable when focusing on any single region (5). With the impact of this transformation on natural systems and ecosystem services yet to be quantified at broad extents, decisions are being made with few data at hand (see the graph, this page).

Collaboration


Dive into the David E. Naugle's collaboration.

Top Co-Authors

Avatar

Kevin E. Doherty

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Kenneth F. Higgins

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy D. Maestas

Natural Resources Conservation Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge