Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Evans is active.

Publication


Featured researches published by Jeffrey S. Evans.


Heredity | 2007

Putting the "landscape" in landscape genetics.

Andrew Storfer; Melanie A. Murphy; Jeffrey S. Evans; Caren S. Goldberg; Stacie J. Robinson; Stephen F. Spear; Raymond J. Dezzani; Eric Delmelle; Lee A. Vierling; Lisette P. Waits

Landscape genetics has emerged as a new research area that integrates population genetics, landscape ecology and spatial statistics. Researchers in this field can combine the high resolution of genetic markers with spatial data and a variety of statistical methods to evaluate the role that landscape variables play in shaping genetic diversity and population structure. While interest in this research area is growing rapidly, our ability to fully utilize landscape data, test explicit hypotheses and truly integrate these diverse disciplines has lagged behind. Part of the current challenge in the development of the field of landscape genetics is bridging the communication and knowledge gap between these highly specific and technical disciplines. The goal of this review is to help bridge this gap by exposing geneticists to terminology, sampling methods and analysis techniques widely used in landscape ecology and spatial statistics but rarely addressed in the genetics literature. We offer a definition for the term ‘landscape genetics’, provide an overview of the landscape genetics literature, give guidelines for appropriate sampling design and useful analysis techniques, and discuss future directions in the field. We hope, this review will stimulate increased dialog and enhance interdisciplinary collaborations advancing this exciting new field.


IEEE Transactions on Geoscience and Remote Sensing | 2007

A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments

Jeffrey S. Evans; Andrew T. Hudak

One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground or nonground in forested environments occurring in complex terrains. Multiscale curvature classification (MCC) is an iterative multiscale algorithm for classifying LiDAR returns that exceed positive surface curvature thresholds, resulting in all the LiDAR measurements being classified as ground or nonground. The MCC algorithm yields a solution of classified returns that support bare-earth surface interpolation at a resolution commensurate with the sampling frequency of the LiDAR survey. Errors in classified ground returns were assessed using 204 independent validation points consisting of 165 field plot global positioning system locations and 39 National Oceanic and Atmospheric Administration-National Geodetic Survey monuments. Jackknife validation and Monte Carlo simulation were used to assess the quality and error of a bare-earth digital elevation model interpolated from the classified returns. A local indicator of spatial association statistic was used to test for commission errors in the classified ground returns. Results demonstrate that the MCC model minimizes commission errors while retaining a high proportion of ground returns and provides high confidence in the derived ground surface


Canadian Journal of Remote Sensing | 2006

Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data

Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael J. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan

We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived from discrete-return lidar data (2 m post spacing), advanced land imager (ALI) multispectral (30 m) and panchromatic (10 m) data, or geographic X, Y, and Z location. In general, the lidar-derived variables had greater utility than the ALI variables for predicting the response variables, especially basal area. The variables most useful for predicting basal area were lidar height variables, followed by lidar intensity; those most useful for predicting tree density were lidar canopy cover variables, again followed by lidar intensity. The best integrated models selected via a best-subsets procedure explained ~90% of variance in both response variables. Natural-logarithm-transformed response variables were modeled. Predictions were then transformed from the natural logarithm scale back to the natural scale, corrected for transformation bias, and mapped across the two study areas. This study demonstrates that fundamental forest structure attributes can be modeled to acceptable accuracy and mapped with currently available remote sensing technologies.


Remote Sensing | 2009

Discrete return lidar in natural resources: recommendations for project planning, data processing, and deliverables.

Jeffrey S. Evans; Andrew T. Hudak; Russ Faux; Alistair M. S. Smith

Recent years have seen the progression of light detection and ranging (lidar) from the realm of research to operational use in natural resource management. Numerous government agencies, private industries, and public/private stakeholder consortiums are planning or have recently acquired large-scale acquisitions, and a national U.S. lidar acquisition is likely before 2020. Before it is feasible for land managers to integrate lidar into decision making, resource assessment, or monitoring across the gambit of natural resource applications, consistent standards in project planning, data processing, and user-driven products are required. This paper introduces principal lidar acquisition parameters, and makes recommendations for project planning, processing, and product standards to better serve natural resource managers across multiple disciplines.


Remote Sensing | 2009

LiDAR Utility for Natural Resource Managers

Andrew T. Hudak; Jeffrey S. Evans; Alistair M. S. Smith

Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of terrestrial natural resource disciplines including forestry, fire and fuels, ecology, wildlife, geology, geomorphology, and surface hydrology. We anticipate that interest in and reliance upon LiDAR for natural resource management, both alone and in concert with other remote sensing data, will continue to rapidly expand for the foreseeable future.


Canadian Journal of Remote Sensing | 2008

The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data

Michael J. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Andrew T. Hudak; Lee A. Vierling; Jeffrey S. Evans

Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to assess the performance of these image-based tree detection algorithms across a full range of canopy structure conditions. We evaluated the performance of two fundamentally different automated tree detection and measurement algorithms (spatial wavelet analysis (SWA) and variable window filters (VWF)) across a full range of canopy conditions in a mixed-species, structurally diverse conifer forest in northern Idaho, USA. Each algorithm performed well in low canopy cover conditions (<50% canopy cover), detecting over 80% of all trees with measurements, and producing tree height and crown diameter estimates that are well correlated with field measurements. However, increasing tree canopy cover significantly decreased the accuracy of both SWA and VWF tree measurements. Neither SWA or VWF produced tree measurements within 25% of field-based measurements in high canopy cover (i.e., canopy cover >50%) conditions. The results presented herein suggest that future algorithm development is required to improve individual tree detection in structurally complex forests. Furthermore, tree detection algorithms such as SWA and VWF may produce more accurate results when used in conjunction with higher density lidar data.


Archive | 2011

Modeling Species Distribution and Change Using Random Forest

Jeffrey S. Evans; Melanie A. Murphy; Zachary A. Holden; Samuel A. Cushman

Although inference is a critical component in ecological modeling, the balance between accurate predictions and inference is the ultimate goal in ecological studies (Peters 1991; De’ath 2007). Practical applications of ecology in conservation planning, ecosystem assessment, and bio-diversity are highly dependent on very accurate spatial predictions of ecological process and spatial patterns (Millar et al. 2007). However, the complex nature of ecological systems hinders our ability to generate accurate models using the traditional frequentist data model (Breiman 2001a; Austin 2007). Well-defined issues in ecological modeling, such as complex non-linear interactions, spatial autocorrelation, high-dimensionality, non-stationary, historic signal, anisotropy, and scale contribute to problems that the frequentist data model has difficulty addressing (Olden et al. 2008). When one critically evaluates data used in ecological models, rarely do the data meet assumptions of independence, homoscedasticity, and multivariate normality (Breiman 2001a). This has caused constant reevaluation of modeling approaches and the effects of reoccurring issues such as spatial autocorrelation.


PLOS ONE | 2011

Win-Win for Wind and Wildlife: a Vision to Facilitate Sustainable Development

Joseph M. Kiesecker; Jeffrey S. Evans; Joe Fargione; Kevin E. Doherty; Kerry R. Foresman; Thomas H. Kunz; David E. Naugle; Nathan P. Nibbelink; Neal D. Niemuth

Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.


Canadian Journal of Remote Sensing | 2009

A cross-comparison of field, spectral, and lidar estimates of forest canopy cover

Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Jeffrey S. Evans; Andrew P. Robinson; Caiti Steele

A common challenge when comparing forest canopy cover and similar metrics across different ecosystems is that there are many field- and landscape-level measurement methods. This research conducts a cross-comparison and evaluation of forest canopy cover metrics produced using unmixing of reflective spectral satellite data, light detection and ranging (lidar) data, and data collected in the field with spherical densiometers. The coincident data were collected across a ~25 000 ha mixed conifer forest in northern Idaho. The primary objective is to evaluate whether the spectral and lidar canopy cover metrics are each statistically equivalent to the field-based metrics. The secondary objective is to evaluate whether the lidar data can elucidate the sources of error observed in the spectral-based canopy cover metrics. The statistical equivalence tests indicate that spectral and field data are not equivalent (slope region of equivalence = 43%). In contrast, the lidar and field data are within the acceptable error margin of most forest inventory assessments (slope region of equivalence = 13%). The results also show that in plots where the mean lidar plot heights are near zero, each of modeled remotely sensed estimates continues to report canopy cover >21% for lidar and >30% for all investigated spectral methods using near-infrared bands. This suggests these metrics are sensitive to the presence of herbaceous vegetation, shrubs, seedlings, saplings, and other subcanopy vegetation.


Archive | 2010

The Gradient Paradigm: A Conceptual and Analytical Framework for Landscape Ecology

Samuel A. Cushman; Kevin Gutzweiler; Jeffrey S. Evans; Kevin McGarigal

Landscape ecology deals fundamentally with how, when, and why patterns of environmental factors influence the distribution of organisms and ecological processes, and reciprocally, how the actions of organisms and ecological processes influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape ecologists goal is to determine where and when spatial and temporal heterogeneity matter, and how they influence processes. A fundamental issue in this effort revolves around the choices a researcher makes about how to depict and measure heterogeneity (Turner 1989; Wiens 1989). Indeed, observed patterns and their apparent relationships with response variables often depend on the scale that is chosen for observation and the rules that are adopted for defining and measuring variables (Wiens 1989; Wu and Hobbs 2000; Wu and Hobbs 2004). Success in understanding pattern-process relationships hinges on accurately characterizing heterogeneity in a manner that is relevant to the organism or process under consideration.

Collaboration


Dive into the Jeffrey S. Evans's collaboration.

Top Co-Authors

Avatar

Andrew T. Hudak

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel A. Cushman

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin E. Doherty

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin McGarigal

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge