Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Feng is active.

Publication


Featured researches published by David Feng.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

A mesoscale connectome of the mouse brain

Seung Wook Oh; Julie A. Harris; Lydia Ng; Brent Winslow; Nicholas Cain; Stefan Mihalas; Quanxin Wang; Chris Lau; Leonard Kuan; Alex Henry; Marty T. Mortrud; Benjamin Ouellette; Thuc Nghi Nguyen; Staci A. Sorensen; Clifford R. Slaughterbeck; Wayne Wakeman; Yang Li; David Feng; Anh Ho; Eric Nicholas; Karla E. Hirokawa; Phillip Bohn; Kevin M. Joines; Hanchuan Peng; Michael Hawrylycz; John Phillips; John G. Hohmann; Paul Wohnoutka; Charles R. Gerfen; Christof Koch

Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Nature Neuroscience | 2015

Canonical genetic signatures of the adult human brain

Michael Hawrylycz; Jeremy A. Miller; Vilas Menon; David Feng; Tim Dolbeare; Angela L. Guillozet-Bongaarts; Anil G. Jegga; Bruce J. Aronow; Chang Kyu Lee; Amy Bernard; Matthew F. Glasser; Donna L. Dierker; Jörg Menche; Aaron Szafer; Forrest Collman; Pascal Grange; Kenneth A. Berman; Stefan Mihalas; Zizhen Yao; Lance Stewart; Albert-László Barabási; Jay Schulkin; John Phillips; Lydia Ng; Chinh Dang; David R. Haynor; Allan R. Jones; David C. Van Essen; Christof Koch; Ed Lein

The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry.


Methods | 2015

Neuroinformatics of the Allen Mouse Brain Connectivity Atlas

Leonard Kuan; Yang Li; Chris Lau; David Feng; Amy Bernard; Susan M. Sunkin; Hongkui Zeng; Chinh Dang; Michael Hawrylycz; Lydia Ng

The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.


The Journal of Comparative Neurology | 2017

Organization of the connections between claustrum and cortex in the mouse

Quanxin Wang; Lydia Ng; Julie A. Harris; David Feng; Yang Li; Josh Royall; Seung Wook Oh; Amy Bernard; Susan M. Sunkin; Christof Koch; Hongkui Zeng

The connections between the claustrum and the cortex in mouse are systematically investigated with adeno‐associated virus (AAV), an anterograde viral tracer. We first define the boundary and the three‐dimensional structure of the claustrum based on a variety of molecular and anatomical data. From AAV injections into 42 neocortical and allocortical areas, we conclude that most cortical areas send bilateral projections to the claustrum, the majority being denser on the ipsilateral side. This includes prelimbic, infralimbic, medial, ventrolateral and lateral orbital, ventral retrosplenial, dorsal and posterior agranular insular, visceral, temporal association, dorsal and ventral auditory, ectorhinal, perirhinal, lateral entorhinal, and anteromedial, posteromedial, lateroposterior, laterointermediate, and postrhinal visual areas. In contrast, the cingulate and the secondary motor areas send denser projections to the contralateral claustrum than to the ipsilateral one. The gustatory, primary auditory, primary visual, rostrolateral visual, and medial entorhinal cortices send projections only to the ipsilateral claustrum. Primary motor, primary somatosensory and subicular areas barely send projections to either ipsi‐ or contralateral claustrum. Corticoclaustral projections are organized in a rough topographic manner, with variable projection strengths. We find that the claustrum, in turn, sends widespread projections preferentially to ipsilateral cortical areas with different projection strengths and laminar distribution patterns and to certain contralateral cortical areas. Our quantitative results show that the claustrum has strong reciprocal and bilateral connections with prefrontal and cingulate areas as well as strong reciprocal connections with the ipsilateral temporal and retrohippocampal areas, suggesting that it may play a crucial role in a variety of cognitive processes. J. Comp. Neurol. 525:1317–1346, 2017.


Archive | 2014

The Allen Brain Atlas

Michael Hawrylycz; Lydia Ng; David Feng; Susan M. Sunkin; Aaron Szafer; Chinh Dang

The Allen Brain Atlas is an online publicly available resource that integrates gene expression and connectivity data with neuroanatomical information for the mouse, human, and non-human primate. Launched in 2004 by the Allen Institute for Brain Science, the portal currently receives about 45000 unique users each month. More than one petabyte of in situ hybridization imagery and over 240 million microarray data points from six adult human brains representing 3700 tissue samples have been generated to date. As one of the most comprehensive gene expression resources for the nervous system, scientists regularly use these resources to study the expression profile of genes in the various regions of the brain. Additional usage includes searching for biomarkers, correlating gene expression to neuroanatomy, and other large-scale correlative data analysis. This chapter reviews the resources available and describes how they were constructed to enable development of visualization and search tools to analyze the massive amount of data generated. Finally, examples are provided on how these tools can be leveraged for scientific discovery.


Frontiers in Neuroscience | 2014

A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development

Cynthia Vied; Florian Freudenberg; Yuting Wang; Alexandre A.S.F. Raposo; David Feng; Richard S. Nowakowski

Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100s, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.


International Review of Neurobiology | 2012

Large-scale neuroinformatics for in situ hybridization data in the mouse brain.

Lydia Ng; Susan M. Sunkin; David Feng; Chris Lau; Chinh Dang; Michael Hawrylycz

Large-scale databases of the brain are providing content to the neuroscience community through molecular, cellular, functional, and connectomic data. Organization, presentation, and maintenance requirements are substantial given the complexity, diverse modalities, resolution, and scale. In addition to microarrays, magnetic resonance imaging, and RNA sequencing, several in situ hybridization databases have been constructed due to their value in spatially localizing cellular expression. Scalable techniques for processing and presenting these data for maximum utility in viewing and analysis are key for end user value. We describe methods and use cases for the Allen Brain Atlas resources of the adult and developing mouse.


Methods | 2015

Exploration and visualization of connectivity in the adult mouse brain

David Feng; Chris Lau; Lydia Ng; Yang Li; Leonard Kuan; Susan M. Sunkin; Chinh Dang; Michael Hawrylycz

The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. All data were aligned to a common template in 3D space to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. A suite of computational tools were developed to search and visualize the projection labeling experiments, available at http://connectivity.brain-map.org. We present three use cases illustrating how these publicly-available tools can be used to perform analyses of long range brain region connectivity. The use cases make extensive use of advanced visualization tools integrated with the atlas including projection density histograms, 3D computed anterograde and retrograde projection paths, and multi-specimen projection composites. These tools offer convenient access to detailed axonal projection information in the adult mouse brain and the ability to perform data analysis and visualization of projection fields and neuroanatomy in an integrated manner.

Collaboration


Dive into the David Feng's collaboration.

Top Co-Authors

Avatar

Lydia Ng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chinh Dang

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Susan M. Sunkin

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Christof Koch

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Jeremy A. Miller

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Stefan Mihalas

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Aaron Szafer

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Amy Bernard

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Leonard Kuan

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge