Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Davies is active.

Publication


Featured researches published by David G. Davies.


Journal of Bacteriology | 2009

A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms

David G. Davies; Cláudia N. H. Marques

It is well established that in nature, bacteria are found primarily as residents of surface-associated communities called biofilms. These structures form in a sequential process initiated by attachment of cells to a surface, followed by the formation of matrix-enmeshed microcolonies, and culminating in dispersion of the bacteria from the mature biofilm. In the present study, we have demonstrated that, during growth, Pseudomonas aeruginosa produces an organic compound we have identified as cis-2-decenoic acid, which is capable of inducing the dispersion of established biofilms and of inhibiting biofilm development. When added exogenously to P. aeruginosa PAO1 biofilms at a native concentration of 2.5 nM, cis-2-decenoic acid was shown to induce the dispersion of biofilm microcolonies. This molecule was also shown to induce dispersion of biofilms, formed by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Streptococcus pyogenes, Bacillus subtilis, Staphylococcus aureus, and the yeast Candida albicans. Active at nanomolar concentrations, cis-2-decenoic acid appears to be functionally and structurally related to the class of short-chain fatty acid signaling molecules such as diffusible signal factor, which act as cell-to-cell communication molecules in bacteria and fungi.


Journal of Bacteriology | 2004

Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm

Karin Sauer; M. C. Cullen; Alexander H. Rickard; Leo Zeef; David G. Davies; P. Gilbert

The processes associated with early events in biofilm formation have become a major research focus over the past several years. Events associated with dispersion of cells from late stage biofilms have, however, received little attention. We demonstrate here that dispersal of Pseudomonas aeruginosa PAO1 from biofilms is inducible by a sudden increase in carbon substrate availability. Most efficient at inducing dispersal were sudden increases in availability of succinate > glutamate > glucose that led to approximately 80% reductions in surface-associated biofilm biomass. Nutrient-induced biofilm dispersion was associated with increased expression of flagella (fliC) and correspondingly decreased expression of pilus (pilA) genes in dispersed cells. Changes in gene expression associated with dispersion of P. aeruginosa biofilms were studied by using DNA microarray technology. Results corroborated proteomic data that showed gene expression to be markedly different between biofilms and newly dispersed cells. Gene families that were upregulated in dispersed cells included those for flagellar and ribosomal proteins, kinases, and phage PF1. Within the biofilm, genes encoding a number of denitrification pathways and pilus biosynthesis were also upregulated. Interestingly, nutrient-induced dispersion was associated with an increase in the number of Ser/Thr-phosphorylated proteins within the newly dispersed cells, and inhibition of dephosphorylation reduced the extent of nutrient-induced dispersion. This study is the first to demonstrate that dispersal of P. aeruginosa from biofilms can be induced by the addition of simple carbon sources. This study is also the first to demonstrate that dispersal of P. aeruginosa correlates with a specific dispersal phenotype.


Journal of Bacteriology | 2005

Characterization of Temporal Protein Production in Pseudomonas aeruginosa Biofilms

Christopher J. Southey-Pillig; David G. Davies; Karin Sauer

Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the role of these biofilm-specific proteins in biofilm formation.


Mbio | 2014

Bacteria Present in Carotid Arterial Plaques Are Found as Biofilm Deposits Which May Contribute to Enhanced Risk of Plaque Rupture

Bernard B. Lanter; Karin Sauer; David G. Davies

ABSTRACT Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these samples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion response when challenged with free iron in vitro. Iron is known to be released into the blood by transferrin following interaction with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the presence but not in the absence of physiological levels of transferrin. IMPORTANCE The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm microcolonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surrounding tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo. This research, therefore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke. The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm microcolonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surrounding tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo. This research, therefore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke.


Archive | 1999

Regulation of Matrix Polymer in Biofilm Formation and Dispersion

David G. Davies

Biofilms are biological films that develop and persist at interfaces in aqueous environments in natural and manmade ecosystems. These biological films are composed of microorganisms embedded in a gelatinous matrix composed of one or more organic polymers which are secreted by the resident microorganisms.


Journal of Bacteriology | 2013

The Putative Enoyl-Coenzyme A Hydratase DspI Is Required for Production of the Pseudomonas aeruginosa Biofilm Dispersion Autoinducer cis-2-Decenoic Acid

Diana T. Amari; Cláudia N. H. Marques; David G. Davies

In the present study, we report the identification of a putative enoyl-coenzyme A (CoA) hydratase/isomerase that is required for synthesis of the biofilm dispersion autoinducer cis-2-decenoic acid in the human pathogen Pseudomonas aeruginosa. The protein is encoded by PA14_54640 (PA0745), named dspI for dispersion inducer. The gene sequence for this protein shows significant homology to RpfF in Xanthomonas campestris. Inactivation of dspI was shown to abolish biofilm dispersion autoinduction in continuous cultures of P. aeruginosa and resulted in biofilms that were significantly greater in thickness and biomass than those of the parental wild-type strain. Dispersion was shown to be inducible in dspI mutants by the exogenous addition of synthetic cis-2-decenoic acid or by complementation of ΔdspI in trans under the control of an arabinose-inducible promoter. Mutation of dspI was also shown to abolish cis-2-decenoic acid production, as revealed by gas chromatography-mass spectrometry (GC-MS) analysis of cell-free spent culture medium. The transcript abundance of dspI correlated with cell density, as determined by quantitative reverse transcriptase (RT) PCR. This regulation is consistent with the characterization of cis-2-decenoic acid as a cell-to-cell communication molecule that regulates biofilm dispersion in a cell density-dependent manner.


PLOS Pathogens | 2014

BdlA, DipA and Induced Dispersion Contribute to Acute Virulence and Chronic Persistence of Pseudomonas aeruginosa

Yi Li; Olga E. Petrova; Shengchang Su; Gee W. Lau; Warunya Panmanee; Renuka Na; Daniel J. Hassett; David G. Davies; Karin Sauer

The human pathogen Pseudomonas aeruginosa is capable of causing both acute and chronic infections. Differences in virulence are attributable to the mode of growth: bacteria growing planktonically cause acute infections, while bacteria growing in matrix-enclosed aggregates known as biofilms are associated with chronic, persistent infections. While the contribution of the planktonic and biofilm modes of growth to virulence is now widely accepted, little is known about the role of dispersion in virulence, the active process by which biofilm bacteria switch back to the planktonic mode of growth. Here, we demonstrate that P. aeruginosa dispersed cells display a virulence phenotype distinct from those of planktonic and biofilm cells. While the highest activity of cytotoxic and degradative enzymes capable of breaking down polymeric matrix components was detected in supernatants of planktonic cells, the enzymatic activity of dispersed cell supernatants was similar to that of biofilm supernatants. Supernatants of non-dispersing ΔbdlA biofilms were characterized by a lack of many of the degradative activities. Expression of genes contributing to the virulence of P. aeruginosa was nearly 30-fold reduced in biofilm cells relative to planktonic cells. Gene expression analysis indicated dispersed cells, while dispersing from a biofilm and returning to the single cell lifestyle, to be distinct from both biofilm and planktonic cells, with virulence transcript levels being reduced up to 150-fold compared to planktonic cells. In contrast, virulence gene transcript levels were significantly increased in non-dispersing ΔbdlA and ΔdipA biofilms compared to wild-type planktonic cells. Despite this, bdlA and dipA inactivation, resulting in an inability to disperse in vitro, correlated with reduced pathogenicity and competitiveness in cross-phylum acute virulence models. In contrast, bdlA inactivation rendered P. aeruginosa more persistent upon chronic colonization of the murine lung, overall indicating that dispersion may contribute to both acute and chronic infections.


Pharmaceuticals | 2015

Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

Cláudia N. H. Marques; David G. Davies; Karin Sauer

Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA) that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.


Infection and Immunity | 2015

Propionibacterium acnes Recovered from Atherosclerotic Human Carotid Arteries Undergoes Biofilm Dispersion and Releases Lipolytic and Proteolytic Enzymes in Response to Norepinephrine Challenge In Vitro

Bernard B. Lanter; David G. Davies

ABSTRACT In the present study, human atherosclerotic carotid arteries were examined following endarterectomy for the presence of the Gram-positive bacterium Propionibacterium acnes and its potential association with biofilm structures within the arterial wall. The P. acnes 16S rRNA gene was detectable in 4 of 15 carotid artery samples, and viable P. acnes was one among 10 different bacterial species recoverable in culture. Fluorescence in situ hybridization analysis of 5 additional atherosclerotic carotid arteries demonstrated biofilm bacteria within all samples, with P. acnes detectable in 4 samples. We also demonstrated that laboratory-grown cultures of P. acnes biofilms were susceptible to induction of a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of iron-bound transferrin or with free iron. The production and release of lipolytic and proteolytic extracellular enzymes by P. acnes were shown to increase in iron-induced dispersed biofilms, and these dispersion-induced P. acnes VP1 biofilms showed increased expression of mRNAs for the triacylglycerol lipases PPA2105 and PPA1796 and the hyaluronate lyase PPA380 compared to that in untreated biofilms. These results demonstrate that P. acnes can infect the carotid arteries of humans with atherosclerosis as a component of multispecies biofilms and that dispersion is inducible for this organism, at least in vitro, with physiologically relevant levels of norepinephrine resulting in the production and release of degradative enzymes.


Journal of Bacteriology | 2002

Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm

Karin Sauer; Anne K. Camper; Garth D. Ehrlich; J. William Costerton; David G. Davies

Collaboration


Dive into the David G. Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge