Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Gur is active.

Publication


Featured researches published by David Gur.


Infection and Immunity | 2004

Generation of Yersinia pestis Attenuated Strains by Signature-Tagged Mutagenesis in Search of Novel Vaccine Candidates

Yehuda Flashner; Emanuelle Mamroud; T. Avital Tidhar; Raphael Ber; Moshe Aftalion; David Gur; Shirley Lazar; Anat Zvi; Tamar Bino; Naomi Ariel; Baruch Velan; Avigdor Shafferman; Sara Cohen

ABSTRACT In a search for novel attenuated vaccine candidates for use against Yersinia pestis, the causative agent of plague, a signature-tagged mutagenesis strategy was used and optimized for a subcutaneously infected mouse model. A library of tagged mutants of the virulent Y. pestis Kimberley53 strain was generated. Screening of 300 mutants through two consecutive cycles resulted in selection of 16 mutant strains that were undetectable in spleens 48 h postinfection. Each of these mutants was evaluated in vivo by assays for competition against the wild-type strain and for virulence following inoculation of 100 CFU (equivalent to 100 50% lethal doses [LD50] of the wild type). A wide spectrum of attenuation was obtained, ranging from avirulent mutants exhibiting competition indices of 10−5 to 10−7 to virulent mutants exhibiting a delay in the mean time to death or mutants indistinguishable from the wild type in the two assays. Characterization of the phenotypes and genotypes of the selected mutants led to identification of virulence-associated genes coding for factors involved in global bacterial physiology (e.g., purH, purK, dnaE, and greA) or for hypothetical polypeptides, as well as for the virulence regulator gene lcrF. One of the avirulent mutant strains (LD50, >107 CFU) was found to be disrupted in the pcm locus, which is presumably involved in the bacterial response to environmental stress. This Kimberley53pcm mutant was superior to the EV76 live vaccine strain because it induced 10- to 100-fold-higher antibody titers to the protective V and F1 antigens and because it conferred efficacious protective immunity.


PLOS ONE | 2009

The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague

Avital Tidhar; Yehuda Flashner; Sara Cohen; Yinon Levi; Ayelet Zauberman; David Gur; Moshe Aftalion; Eytan Elhanany; Anat Zvi; Avigdor Shafferman; Emanuelle Mamroud

Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.


Applied and Environmental Microbiology | 2003

Development of an Improved Selective Agar Medium for Isolation of Yersinia pestis

Raphael Ber; Emanuelle Mamroud; Moshe Aftalion; Avital Tidhar; David Gur; Yehuda Flashner; Sara Cohen

ABSTRACT Existing media designed for selective isolation of clinically important members of the genus Yersinia were found to be unsatisfactory for the growth and isolation of Yersinia pestis. We report the development of a new selective agar medium (termed BIN) that supports the growth of Y. pestis. The development of the formulation of this medium was based on a fluorescence screening system designed for monitoring bacterial growth on semisolid media, using a green fluorescent protein-expressing strain. High-throughput combinatorial experiments can be conducted for the quantitative evaluation of the effect of different medium components on growth. Generation of fluorescence plots in this system, using microplates, allowed the quantitative evaluation of the growth rate of Y. pestis EV76 cultures in different agar compositions. The final BIN formulation is based on brain heart infusion agar, to which the selective agents irgasan, cholate salts, crystal violet, and nystatin were introduced. It was found that BIN agar is more efficient in supporting colony formation and recovery of Y. pestis than are the conventional semisolid media MacConkey agar and Yersinia-selective agar (cefsulodin-irgasan-novobiocin agar). The advantage of BIN over other media has been also demonstrated in recovering virulent Y. pestis from the mixed bacterial populations found in decaying carcasses of infected mice. The BIN medium is suggested as a selective medium for isolation and recovery of Y. pestis from various backgrounds.


PLOS Pathogens | 2015

Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague

Yaron Vagima; Ayelet Zauberman; Yinon Levy; David Gur; Avital Tidhar; Moshe Aftalion; Avigdor Shafferman; Emanuelle Mamroud

Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen.


Frontiers in Cellular and Infection Microbiology | 2012

Early sensing of Yersinia pestis airway infection by bone marrow cells

Yaron Vagima; Yinon Levy; David Gur; Avital Tidhar; Moshe Aftalion; Hagar Abramovich; Eran Zahavy; Ayelet Zauberman; Yehuda Flashner; Avigdor Shafferman; Emanuelle Mamroud

Bacterial infection of the lungs triggers a swift innate immune response that involves the production of cytokines and chemokines that promote recruitment of immune cells from the bone marrow (BM) into the infected tissue and limit the ability of the pathogen to replicate. Recent in vivo studies of pneumonic plague in animal models indicate that the pulmonary pro-inflammatory response to airway infection with Yersinia pestis is substantially delayed in comparison to other pathogens. Consequently, uncontrolled proliferation of the pathogen in the lungs is observed, followed by dissemination to internal organs and death. While the lack of an adequate early immune response in the lung is well described, the response of BM-derived cells is poorly understood. In this study, we show that intranasal (i.n.) infection of mice with a fully virulent Y. pestis strain is sensed early by the BM compartment, resulting in a reduction in CXCR4 levels on BM neutrophils and their subsequent release into the blood 12 hours (h) post infection. In addition, increased levels of BM-derived hematopoietic stem and progenitor cells (HSPC) were detected in the blood early after infection. Mobilization of both immature and mature cells was accompanied by the reduction of BM SDF-1 (CXCL-12) levels and the reciprocal elevation of SDF-1 in the blood 24 h post infection. RT-PCR analysis of RNA collected from total BM cells revealed an early induction of myeloid-associated genes, suggesting a prompt commitment to myeloid lineage differentiation. These findings indicate that lung infection by Y. pestis is sensed by BM cells early after infection, although bacterial colonization of the BM occurs at late disease stages, and point on a potential cross-talk between the lung and the BM at early stages of pneumonic plague.


Fems Immunology and Medical Microbiology | 2010

The search for early markers of plague: evidence for accumulation of soluble Yersinia pestis LcrV in bubonic and pneumonic mouse models of disease.

Yehuda Flashner; Morly Fisher; Avital Tidhar; Adva Mechaly; David Gur; Gideon Halperin; Eran Zahavy; Emanuelle Mamroud; Sara Cohen

Markers of the early stages of plague, a rapidly progressing deadly disease, are crucial for enabling the onset of an effective treatment. Here, we show that V-antigen protein (LcrV) is accumulated in the serum of Yersinia pestis-infected mice before bacterial colonization of the spleen and dissemination to blood, in a model of bubonic plague. LcrV accumulation is detected earlier than that of F1 capsular antigen, an established marker of disease. In a mouse model of pneumonic plague, LcrV can be determined in the bronchoalveolar lavage fluid somewhat later than F1, but before dissemination of Y. pestis to the blood. Thus, determination of soluble LcrV is suggested as a potential useful tool for monitoring disease progression in both bubonic and pneumonic plague. Moreover, it may be of particular advantage in cases of infections with F1 nonproducing strains.


Advances in Experimental Medicine and Biology | 2007

Enrichment of Yersinia pestis from Blood Cultures Enables Rapid Antimicrobial Susceptibility Determination by Flow Cytometry

Raphael Ber; Moshe Aftalion; Sara Cohen; Yehuda Flashner; Emanuelle Mamroud; David Gur; Ida Steinberger-Levy; Eran Zahavy

Mortality from plague is high if not treated with the proper antibiotics within 18-24 hours after onset of symptoms. The process of antibiotic susceptibility determination of Yersinia pestis isolated from blood samples may extend from 4 to more than 7 days, since the in vitro growth is very slow. To accelerate this process, we developed an enrichment protocol as well as a non-standard yet reliable method for rapid antibiotic susceptibility analysis of Y. pestis from blood cultures using flow cytometry technology. This rapid method is applicable to blood cultures containing low levels of Y. pestis.


Frontiers in Cellular and Infection Microbiology | 2017

Host Iron Nutritional Immunity Induced by a Live Yersinia pestis Vaccine Strain Is Associated with Immediate Protection against Plague

Ayelet Zauberman; Yaron Vagima; Avital Tidhar; Moshe Aftalion; David Gur; Shahar Rotem; Theodor Chitlaru; Yinon Levy; Emanuelle Mamroud

Prompt and effective elicitation of protective immunity is highly relevant for cases of rapidly deteriorating fatal diseases, such as plague, which is caused by Yersinia pestis. Here, we assessed the potential of a live vaccine to induce rapid protection against this infection. We demonstrated that the Y. pestis EV76 live vaccine protected mice against an immediate lethal challenge, limiting the multiplication of the virulent pathogen and its dissemination into circulation. Ex vivo analysis of Y. pestis growth in serum derived from EV76-immunized mice revealed that an antibacterial activity was produced rapidly. This activity was mediated by the host heme- and iron-binding proteins hemopexin and transferrin, and it occurred in strong correlation with the kinetics of hemopexin induction in vivo. We suggest a new concept in which a live vaccine is capable of rapidly inducing iron nutritional immunity, thus limiting the propagation of pathogens. This concept could be exploited to design novel therapeutic interventions.


PLOS ONE | 2013

YopP-Expressing Variant of Y. pestis Activates a Potent Innate Immune Response Affording Cross-Protection against Yersiniosis and Tularemia

Ayelet Zauberman; Yehuda Flashner; Yinon Levy; Yaron Vagima; Avital Tidhar; Ofer Cohen; Erez Bar-Haim; David Gur; Moshe Aftalion; Gideon Halperin; Avigdor Shafferman; Emanuelle Mamroud

Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.


Frontiers in Microbiology | 2016

A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes

Ida Steinberger-Levy; Ohad Shifman; Anat Zvi; Naomi Ariel; Adi Beth-Din; Ofir Israeli; David Gur; Moshe Aftalion; Sharon Maoz; Raphael Ber

Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we present an alternative approach for the rapid determination of antimicrobial susceptibility, based on the quantification of the changes in the expression levels of specific marker genes following exposure to growth-inhibiting concentrations of the antibiotic, using Y. pestis and ciprofloxacin as a model. The marker genes were identified by transcriptomic DNA microarray analysis of the virulent Y. pestis Kimberley53 strain after exposure to specific concentrations of ciprofloxacin for various time periods. We identified several marker genes that were induced following exposure to growth-inhibitory concentrations of ciprofloxacin, and we confirmed the marker expression profiles at additional ciprofloxacin concentrations using quantitative RT-PCR. Eleven candidate marker transcripts were identified, of which four mRNA markers were selected for a rapid quantitative RT-PCR susceptibility test that correctly determined the Minimal Inhibitory Concentration (MIC) values and the categories of susceptibility of several Y. pestis strains and isolates harboring various ciprofloxacin MIC values. The novel molecular susceptibility test requires just 2 h of antibiotic exposure in a 7-h overall test time, in contrast to the 24 h of antibiotic exposure required for a standard microdilution test.

Collaboration


Dive into the David Gur's collaboration.

Top Co-Authors

Avatar

Emanuelle Mamroud

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Moshe Aftalion

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avital Tidhar

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yehuda Flashner

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avigdor Shafferman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Ayelet Zauberman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Sara Cohen

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yinon Levy

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Raphael Ber

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yaron Vagima

Israel Institute for Biological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge