Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuelle Mamroud is active.

Publication


Featured researches published by Emanuelle Mamroud.


Infection and Immunity | 2004

Generation of Yersinia pestis Attenuated Strains by Signature-Tagged Mutagenesis in Search of Novel Vaccine Candidates

Yehuda Flashner; Emanuelle Mamroud; T. Avital Tidhar; Raphael Ber; Moshe Aftalion; David Gur; Shirley Lazar; Anat Zvi; Tamar Bino; Naomi Ariel; Baruch Velan; Avigdor Shafferman; Sara Cohen

ABSTRACT In a search for novel attenuated vaccine candidates for use against Yersinia pestis, the causative agent of plague, a signature-tagged mutagenesis strategy was used and optimized for a subcutaneously infected mouse model. A library of tagged mutants of the virulent Y. pestis Kimberley53 strain was generated. Screening of 300 mutants through two consecutive cycles resulted in selection of 16 mutant strains that were undetectable in spleens 48 h postinfection. Each of these mutants was evaluated in vivo by assays for competition against the wild-type strain and for virulence following inoculation of 100 CFU (equivalent to 100 50% lethal doses [LD50] of the wild type). A wide spectrum of attenuation was obtained, ranging from avirulent mutants exhibiting competition indices of 10−5 to 10−7 to virulent mutants exhibiting a delay in the mean time to death or mutants indistinguishable from the wild type in the two assays. Characterization of the phenotypes and genotypes of the selected mutants led to identification of virulence-associated genes coding for factors involved in global bacterial physiology (e.g., purH, purK, dnaE, and greA) or for hypothetical polypeptides, as well as for the virulence regulator gene lcrF. One of the avirulent mutant strains (LD50, >107 CFU) was found to be disrupted in the pcm locus, which is presumably involved in the bacterial response to environmental stress. This Kimberley53pcm mutant was superior to the EV76 live vaccine strain because it induced 10- to 100-fold-higher antibody titers to the protective V and F1 antigens and because it conferred efficacious protective immunity.


Infection and Immunity | 2006

Interaction of Yersinia pestis with Macrophages: Limitations in YopJ-Dependent Apoptosis

Ayelet Zauberman; Sara Cohen; Emanuelle Mamroud; Yehuda Flashner; Avital Tidhar; Raphael Ber; Eytan Elhanany; Avigdor Shafferman; Baruch Velan

ABSTRACT The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Kimberley53 strain. Y. pestis exerts YopJ-dependent suppression of tumor necrosis factor alpha secretion and phosphorylation of mitogen-activated protein kinases and thus resembles enteropathogenic Yersinia. However, Y. pestis is less able to activate caspases, to suppress NF-κB activation, and to induce apoptosis in macrophages than the high-virulence Y. enterocolitica WA O:8 strain. These differences appear to be related to lower efficiency of YopJ effector translocation by Y. pestis. The efficiencies of effector translocation and of apoptosis induction can be enhanced either by using a high bacterial load in a synchronized infection or by overexpressing exogenous YopJ in Y. pestis. Replacing YopJ with the homologous Y. enterocolitica effector YopP can further enhance these effects. Overexpression of YopP in a yopJ-deleted Y. pestis background leads to rapid and effective translocation into target cells, providing Y. pestis with the high cytotoxic potential of Y. enterocolitica WA O:8. We suggest that the relative inferiority of Y. pestis in triggering cell death in macrophages may be advantageous for its in vivo propagation in the early stages of infection.


PLOS ONE | 2009

The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague

Avital Tidhar; Yehuda Flashner; Sara Cohen; Yinon Levi; Ayelet Zauberman; David Gur; Moshe Aftalion; Eytan Elhanany; Anat Zvi; Avigdor Shafferman; Emanuelle Mamroud

Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.


Infection and Immunity | 2003

Effective Protective Immunity to Yersinia pestis Infection Conferred by DNA Vaccine Coding for Derivatives of the F1 Capsular Antigen

Haim Grosfeld; Sara Cohen; Tamar Bino; Yehuda Flashner; Raphael Ber; Emanuelle Mamroud; Chanoch Kronman; Avigdor Shafferman; Baruch Velan

ABSTRACT Three plasmids expressing derivatives of the Yersinia pestis capsular F1 antigen were evaluated for their potential as DNA vaccines. These included plasmids expressing the full-length F1, F1 devoid of its putative signal peptide (deF1), and F1 fused to the signal-bearing E3 polypeptide of Semliki Forest virus (E3/F1). Expression of these derivatives in transfected HEK293 cells revealed that deF1 is expressed in the cytosol, E3/F1 is targeted to the secretory cisternae, and the nonmodified F1 is rapidly eliminated from the cell. Intramuscular vaccination of mice with these plasmids revealed that the vector expressing deF1 was the most effective in eliciting anti-F1 antibodies. This response was not limited to specific mouse strains or to the mode of DNA administration, though gene gun-mediated vaccination was by far more effective than intramuscular needle injection. Vaccination of mice with deF1 DNA conferred protection against subcutaneous infection with the virulent Y. pestis Kimberley53 strain, even at challenge amounts as high as 4,000 50% lethal doses. Antibodies appear to play a major role in mediating this protection, as demonstrated by passive transfer of anti-deF1 DNA antiserum. Taken together, these observations indicate that a tailored genetic vaccine based on a bacterial protein can be used to confer protection against plague in mice without resorting to regimens involving the use of purified proteins.


PLOS ONE | 2009

Yersinia pestis Endowed with Increased Cytotoxicity Is Avirulent in a Bubonic Plague Model and Induces Rapid Protection against Pneumonic Plague

Ayelet Zauberman; Avital Tidhar; Yinon Levy; Erez Bar-Haim; Gideon Halperin; Yehuda Flashner; Sara Cohen; Avigdor Shafferman; Emanuelle Mamroud

An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica O∶8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 107-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD50 of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.


Infection and Immunity | 2006

Discordance in the Effects of Yersinia pestis on the Dendritic Cell Functions Manifested by Induction of Maturation and Paralysis of Migration

Baruch Velan; Erez Bar-Haim; Ayelet Zauberman; Emanuelle Mamroud; Avigdor Shafferman; Sara Cohen

ABSTRACT The encounter between invading microorganisms and dendritic cells (DC) triggers a series of events which include uptake and degradation of the microorganism, induction of a maturation process, and enhancement of DC migration to the draining lymph nodes. Various pathogens have developed strategies to counteract these events as a measure to evade the host defense. In the present study we found that interaction of the Yersinia pestis EV76 strain with DC has no effect on cell viability and is characterized by compliance with effective maturation, which is manifested by surface display of major histocompatibility complex class II, of costimulatory markers, and of the chemokine receptor CCR7. This is in contrast to maturation inhibition and cell death induction exerted by the related species Yersinia enterocolitica WA O:8. Y. pestis interactions with DC were found, however, to impair functions related to cytoskeleton rearrangement. DC pulsed with Y. pestis failed to adhere to solid surfaces and to migrate toward the chemokine CCL19 in an in vitro transmembrane assay. Both effects were dependent on the presence of the pCD1 virulence plasmid and on a bacterial growth shift to 37°C prior to infection. Moreover, while instillation of a pCD1-cured Y. pestis strain into mouse airways triggered effective transport of alveolar DC to the mediastinal lymph node, instillation of Y. pestis harboring the plasmid failed to do so. Taken together, these results suggest that virulence plasmid-dependent impairment of DC migration is the major mechanism utilized by Y. pestis to subvert DC function.


Applied and Environmental Microbiology | 2003

Development of an Improved Selective Agar Medium for Isolation of Yersinia pestis

Raphael Ber; Emanuelle Mamroud; Moshe Aftalion; Avital Tidhar; David Gur; Yehuda Flashner; Sara Cohen

ABSTRACT Existing media designed for selective isolation of clinically important members of the genus Yersinia were found to be unsatisfactory for the growth and isolation of Yersinia pestis. We report the development of a new selective agar medium (termed BIN) that supports the growth of Y. pestis. The development of the formulation of this medium was based on a fluorescence screening system designed for monitoring bacterial growth on semisolid media, using a green fluorescent protein-expressing strain. High-throughput combinatorial experiments can be conducted for the quantitative evaluation of the effect of different medium components on growth. Generation of fluorescence plots in this system, using microplates, allowed the quantitative evaluation of the growth rate of Y. pestis EV76 cultures in different agar compositions. The final BIN formulation is based on brain heart infusion agar, to which the selective agents irgasan, cholate salts, crystal violet, and nystatin were introduced. It was found that BIN agar is more efficient in supporting colony formation and recovery of Y. pestis than are the conventional semisolid media MacConkey agar and Yersinia-selective agar (cefsulodin-irgasan-novobiocin agar). The advantage of BIN over other media has been also demonstrated in recovering virulent Y. pestis from the mixed bacterial populations found in decaying carcasses of infected mice. The BIN medium is suggested as a selective medium for isolation and recovery of Y. pestis from various backgrounds.


Vaccine | 2008

Neutralization of Yersinia pestis-mediated macrophage cytotoxicity by anti-LcrV antibodies and its correlation with protective immunity in a mouse model of bubonic plague

Ayelet Zauberman; Sara Cohen; Yinon Levy; Gideon Halperin; Shirley Lazar; Baruch Velan; Avigdor Shafferman; Yehuda Flashner; Emanuelle Mamroud

Plague is a life-threatening disease caused by Yersinia pestis, for which effective-licensed vaccines and reliable predictors of in vivo immunity are lacking. V antigen (LcrV) is a major Y. pestis virulence factor that mediates translocation of the cytotoxic Yersinia protein effectors (Yops). It is a well-established protective antigen and a part of currently tested plague subunit vaccines. We have developed a highly sensitive in vitro macrophage cytotoxicity neutralization assay which is mediated by anti-LcrV antibodies; and studied the potential use of these neutralizing antibodies as an in vitro correlate of plague immunity in mice. The assay is based on a Y. pestis strain with enhanced cytotoxicity to macrophages in which endogenous yopJ was replaced by the more effectively translocated yopP of Y. enterocolitica O:8. Mice passively immunized with rabbit anti-LcrV IgG or actively immunized with recombinant LcrV were protected against lethal doses of a virulent Y. pestis strain, in a mouse model of bubonic plague. This protection significantly correlated with the in vitro neutralizing activity of the antisera but not with their corresponding ELISA titers. In actively immunized mice, a cutoff value for serum neutralizing activity, above which survival was assured with high degree of confidence, could be established for different vaccination regimes. The impact of overall findings on the potential use of serum neutralizing activity as a correlate of protective immunity is discussed.


PLOS Pathogens | 2015

Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague

Yaron Vagima; Ayelet Zauberman; Yinon Levy; David Gur; Avital Tidhar; Moshe Aftalion; Avigdor Shafferman; Emanuelle Mamroud

Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen.


Advances in Experimental Medicine and Biology | 2007

Disparity Between Yersinia pestis and Yersinia enterocolitica O:8 in YopJ/YopP-Dependent Functions

Emanuelle Mamroud; Ayelet Zauberman; Avigdor Shafferman; Sara Cohen; Yehuda Flashner; Baruch Velan

YopP in Y. enterocolitica and YopJ in Y. pseudotuberculosis, have been shown to exert a variety of adverse effects on cell signaling leading to suppression of cytokine expression and induction of programmed cell death. A comparative in vitro study with Y. pestis and Y. enterocolitica O:8 virulent strains shows some critical disparity in YopJ/YopP-related effects on immune cells. Involvement of yopJ in virulence was evaluated in mouse model of bubonic plague.

Collaboration


Dive into the Emanuelle Mamroud's collaboration.

Top Co-Authors

Avatar

Yehuda Flashner

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avital Tidhar

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

David Gur

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Sara Cohen

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avigdor Shafferman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Ayelet Zauberman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Moshe Aftalion

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yinon Levy

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Raphael Ber

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Baruch Velan

Israel Institute for Biological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge