Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Huesmann is active.

Publication


Featured researches published by David Huesmann.


Biomacromolecules | 2014

Polypeptoid-block-polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques

Alexander Birke; David Huesmann; Annette Kelsch; Martin Weilbächer; Jing Xie; Matthias Bros; Tobias Bopp; Christian Becker; Katharina Landfester; Matthias Barz

We report the synthesis of polysarcosine-block-polyglutamic acid benzylester (PSar-block-PGlu(OBn)) and polysarcosine-block-polylysine-ε-N-benzyloxycarbonyl (PSar-block-PLys(Z)) copolymers. The novel polypeptoid-block-polypeptide copolymers (Copolypept(o)ides) have been synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs). Polymerization conditions were optimized regarding protecting groups, block sequence and length. While the degree of polymerization of the PSar block length was set to be around 200 or 400, PGlu(OBn) and PLys(Z) block lengths were varied between 20 to 75. The obtained block copolymers had a total degree of polymerization of 220-475 and dispersity indices between 1.1 and 1.2. Having ensured a nontoxic behavior up to a concentration of 3 mg/mL in HEK293 cells, the novel block copolymers have been applied to the synthesis of organic colloids (by miniemulsion polymerization and miniemulsion solvent evaporation process). Colloids of around 100 nm (miniemulsion polymerization) to 200 nm (miniemulsion process) have been prepared. Additionally, PSar-block-PGlu(OBn) copolymers have been used in a drug formulation of an adenylate cyclase inhibitor. Micelles of 28.0 nm (without drug) and 33.0 nm (with drug) diameter have been observed by fluorescence correlation spectroscopy (FCS). The polypeptoid-block-polypeptide formulation increased solubility of the drug and enhances its bioavailability, which leads to a reduction of intracellular cAMP levels in MaMel 91 melanoma cells.


Macromolecular Bioscience | 2014

Introducing PeptoPlexes: polylysine-block-polysarcosine based polyplexes for transfection of HEK 293T cells.

Philipp Heller; Alexander Birke; David Huesmann; Benjamin Weber; Karl Fischer; Angelika B. Reske-Kunz; Matthias Bros; Matthias Barz

A series of well-defined polypeptide-polypeptoid block copolymers based on the bodys own amino acids sarcosine and lysine are prepared by ring opening polymerization of N-carboxyanhydrides. Block lengths were varied between 200-300 for the shielding polysarcosine block and 20-70 for the complexing polylysine block. Dispersity indexes ranged from 1.05 to 1.18. Polylysine is polymerized with benzyloxycarbonyl as well as trifluoroacetyl protecting groups at the ϵ-amine group and optimized deprotection protocols for both groups are reported. The obtained block ionomers are used to complex pDNA resulting in the formation of polyplexes (PeptoPlexes). The PeptoPlexes can be successfully applied in the transfection of HEK 293T cells and are able to transfect up to 50% of cells in vitro (FACS assay), while causing no detectable toxicity in an Annexin V assay. These findings are a first indication that PeptoPlexes may be a suitable alternative to PEG based non-viral transfection systems.


Macromolecular Bioscience | 2016

Bioreducible Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents.

Kristof Tappertzhofen; Simone Beck; Evelyn Montermann; David Huesmann; Matthias Barz; Kaloian Koynov; Matthias Bros; Rudolf Zentel

Polylysine-b-p[HPMA] block copolymers containing a redox-responsive disulfide bond between both blocks are synthesized by RAFT polymerization of pentafluorphenyl-methacrylate with a macro-CTA from Nϵ-benzyloxycarbonyl (Cbz) protected polylysine (synthesized by NCA polymerization). This polylysine-b-p[PFMA] precursor block copolymer is converted to polylysine(Cbz)-b-p[HPMA] by postpolymerization modification with 2-hydroxypropylamine. After removal of the Cbz protecting group, cationic polylysine-b-p[HPMA] copolymers with a biosplittable disulfide moiety became available, which can be used as polymeric transfection vectors. These disulfide linked polylysine-S-S-b-p[HPMA] block copolymers show low cytotoxicity and increased transfection efficiencies (HEK-293T cells) compared to analogous blockcopolymers without disulfide group making them interesting for the transfection of sensitive immune cells.


Journal of Materials Chemistry | 2013

Synthesis of gold nanotubes with variable wall thicknesses

Colin R. Bridges; Paul M. DiCarmine; Ana Fokina; David Huesmann; Dwight S. Seferos

We report the synthesis of gold nanotubes with variable wall thicknesses that is accomplished by the deposition of sacrificial hydrophobic polymer cores followed by gold shells within an anodic aluminum oxide template. We demonstrate that by varying polymer core hydrophobicity, the resulting gold shell thickness can be varied. There are two requirements for gold shell formation: (1) the polymer core must be able to be electrodeposited into a tubular (as opposed to wire-like) structure, and (2) the polymer must be hydrophobic, such that it collapses upon exposure to an aqueous solution. An array of gold nanotubes has variable plasmonic properties and can function as a surface enhanced Raman spectroscopy substrate.


Chemistry: A European Journal | 2016

Rethinking Cysteine Protective Groups: S‐Alkylsulfonyl‐l‐Cysteines for Chemoselective Disulfide Formation

Olga Schäfer; David Huesmann; Christian Muhl; Matthias Barz

The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps.


Polymer Chemistry | 2017

Orthogonally reactive amino acids and end groups in NCA polymerization

David Huesmann; Kristina Klinker; Matthias Barz

Functional amino acids whose reactivity is compatible with the polymerization of α-amino acid-N-carboxyanhydrides (NCAs) have received a lot of attention in recent years. The appeal of these reactive monomers lies in the fact that the resulting polymers can be easily modified in one controlled post-polymerization step, leading to a variety of polypeptidic materials like helical non-natural polycations or glycopeptides. This review highlights recent developments in the field and focuses on the different reactive groups like alkynes, alkenes, azides, chlorides and S-alkylsulfonyls. Furthermore, the modifications after polymerization are discussed, pointing out advantages and challenges. Besides orthogonal functionalities in the side chain, different approaches are summarized to modify α- and ω-chain ends with orthogonal functionalities for grafting to and grafting from applications. Thus, new materials can be produced through mild modifications as presented. Finally, we also highlight the development of orthogonally reactive NCAs for the synthesis of polypeptoids, a field that is relatively unexplored, but offers great possibilities for example for polypept(o)idic hybrid materials.


Angewandte Chemie | 2017

Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures

Kristina Klinker; Olga Schäfer; David Huesmann; Tobias Bauer; Leon Capelôa; Lydia Braun; Natascha Stergiou; Meike Schinnerer; Anjaneyulu Dirisala; Kanjiro Miyata; Kensuke Osada; Horacio Cabral; Kazunori Kataoka; Matthias Barz

Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple yet powerful approach to versatile peptide-based core-shell nanostructures.


Macromolecules | 2014

Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines

David Huesmann; Alexander Birke; Kristina Klinker; Stephan Türk; Hans Joachim Räder; Matthias Barz


Polymer | 2015

A head-to-head comparison of poly(sarcosine) and poly(ethylene glycol) in peptidic, amphiphilic block copolymers

David Huesmann; Adrian Sevenich; Benjamin Weber; Matthias Barz


Macromolecules | 2016

Poly(S-ethylsulfonyl-l-cysteines) for Chemoselective Disulfide Formation

Olga Schäfer; David Huesmann; Matthias Barz

Collaboration


Dive into the David Huesmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge