Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David I. Heiman is active.

Publication


Featured researches published by David I. Heiman.


Nature | 2013

Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Michael S. Lawrence; Petar Stojanov; Paz Polak; Gregory V. Kryukov; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Chip Stewart; Craig H. Mermel; Steven A. Roberts; Adam Kiezun; Peter S. Hammerman; Aaron McKenna; Yotam Drier; Lihua Zou; Alex H. Ramos; Trevor J. Pugh; Nicolas Stransky; Elena Helman; Jaegil Kim; Carrie Sougnez; Lauren Ambrogio; Elizabeth Nickerson; Erica Shefler; Maria L. Cortes; Daniel Auclair; Gordon Saksena; Douglas Voet; Michael S. Noble; Daniel DiCara

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Nature Genetics | 2012

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Richard O'Connell; Michael R. Thon; Stéphane Hacquard; Stefan G. Amyotte; Jochen Kleemann; Maria F. Torres; Ulrike Damm; Ester Buiate; Lynn Epstein; Noam Alkan; Janine Altmüller; Lucia Alvarado-Balderrama; Christopher Bauser; Christian Becker; Bruce W. Birren; Zehua Chen; Jae Young Choi; Jo Anne Crouch; Jonathan P. Duvick; Mark A. Farman; Pamela Gan; David I. Heiman; Bernard Henrissat; Richard J. Howard; Mehdi Kabbage; Christian Koch; Barbara Kracher; Yasuyuki Kubo; Audrey D. Law; Marc-Henri Lebrun

Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.


Nature | 2011

The genome of the green anole lizard and a comparative analysis with birds and mammals

Jessica Alföldi; Federica Di Palma; Manfred Grabherr; Christina Williams; Lesheng Kong; Evan Mauceli; Pamela Russell; Craig B. Lowe; Richard E. Glor; Jacob D. Jaffe; David A. Ray; Stéphane Boissinot; Andrew M. Shedlock; Todd A. Castoe; John K. Colbourne; Matthew K. Fujita; Ricardo Moreno; Boudewijn ten Hallers; David Haussler; Andreas Heger; David I. Heiman; Daniel E. Janes; Jeremy Johnson; Pieter J. de Jong; Maxim Koriabine; Marcia Lara; Peter Novick; Chris L. Organ; Sally E. Peach; Steven Poe

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse—more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


Science | 2014

Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication

Miguel Carneiro; Carl Johan Rubin; Federica Di Palma; Frank W. Albert; Jessica Alföldi; Alvaro Martinez Barrio; Gerli Rosengren Pielberg; Nima Rafati; Shumaila Sayyab; Jason Turner-Maier; Shady Younis; Sandra Afonso; Bronwen Aken; Joel M. Alves; Daniel Barrell; G. Bolet; Samuel Boucher; Hernán A. Burbano; Rita Campos; Jean L. Chang; Véronique Duranthon; Luca Fontanesi; Hervé Garreau; David I. Heiman; Jeremy A. Johnson; Rose G. Mage; Ze Peng; Guillaume Queney; Claire Rogel-Gaillard; Magali Ruffier

Rabbits softly swept to domestication When people domesticate animals, they select for tameness and tolerance of humans. What else do they look for? To identify the selective pressures that led to rabbit domestication, Carneiro et al. sequenced a domestic rabbit genome and compared it to that of its wild brethren (see the Perspective by Lohmueller). Domestication did not involve a single gene changing, but rather many gene alleles changing in frequency between tame and domestic rabbits, known as a soft selective sweep. Many of these alleles have changes that may affect brain development, supporting the idea that tameness involves changes at multiple loci. Science, this issue p. 1074; see also p. 1000 The domestication of rabbits primarily shifted the frequencies of alleles represented, rather than creating new genes. [Also see Perspective by Lohmueller] The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.


Genome Research | 2012

Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

Christina A. Cuomo; Christopher A. Desjardins; Malina A. Bakowski; Jonathan M. Goldberg; Amy T. Ma; James J. Becnel; Elizabeth S. Didier; Lin Fan; David I. Heiman; Joshua Z. Levin; Qiandong Zeng; Emily R. Troemel

Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.


Genome Research | 2010

Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control

Daniel E. Neafsey; Bridget M. Barker; Thomas J. Sharpton; Jason E. Stajich; Daniel J. Park; Emily Whiston; Chiung Yu Hung; Cody McMahan; Jared White; Sean Sykes; David I. Heiman; Qiandong Zeng; Amr Abouelleil; Lynne Aftuck; Daniel Bessette; Adam Brown; Michael Fitzgerald; Annie Lui; J. Pendexter Macdonald; Margaret Priest; Marc J. Orbach; John N. Galgiani; Theo N. Kirkland; Garry T. Cole; Bruce W. Birren; Matthew R. Henn; John W. Taylor; Steven D. Rounsley

We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCR-based sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression.


Mbio | 2012

Comparative Genome Analysis of Trichophyton rubrum and Related Dermatophytes Reveals Candidate Genes Involved in Infection

Diego Martinez; Brian G. Oliver; Yvonne Gräser; Jonathan M. Goldberg; Wenjun Li; Nilce M. Martinez-Rossi; Michel Monod; Ekaterina Shelest; Richard Barton; Elizabeth Birch; Axel A. Brakhage; Zehua Chen; Sarah J. Gurr; David I. Heiman; Joseph Heitman; Idit Kosti; Antonio Rossi; Sakina Saif; Marketa Samalova; Charles Winston Saunders; Terrance Shea; Richard C. Summerbell; Jun Xu; Qiandong Zeng; Bruce W. Birren; Christina A. Cuomo; Theodore C. White

ABSTRACT The major cause of athlete’s foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease. Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.


PLOS Genetics | 2011

Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

Christopher A. Desjardins; Mia D. Champion; Jason W. Holder; Anna Muszewska; Jonathan M. Goldberg; Alexandre M. Bailão; Marcelo M. Brigido; Márcia Eliana da Silva Ferreira; Ana Maria Garcia; Marcin Grynberg; Sharvari Gujja; David I. Heiman; Matthew R. Henn; Chinnappa D. Kodira; Henry León-Narváez; Larissa V. G. Longo; Li-Jun Ma; Iran Malavazi; Alisson L. Matsuo; Flavia V. Morais; Maristela Pereira; Sabrina Rodríguez-Brito; Sharadha Sakthikumar; Silvia Maria Salem-Izacc; Sean Sykes; Marcus de Melo Teixeira; Milene C. Vallejo; Maria Emilia Telles Walter; Chandri Yandava; Qiandong Zeng

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Journal of Bacteriology | 2010

High-Quality Draft Genome Sequences of 28 Enterococcus sp. Isolates

Kelli L. Palmer; Karen Carniol; Janet M. Manson; David I. Heiman; Terry Shea; Qiandong Zeng; Dirk Gevers; Michael Feldgarden; Bruce W. Birren; Michael S. Gilmore

The enterococci are low-GC Gram-positive bacteria that have emerged as leading causes of hospital-acquired infection. They are also commensals of the gastrointestinal tract of healthy humans and most other animals with gastrointestinal flora and are important for food fermentations. Here we report the availability of draft genome sequences for 28 enterococcal strains of diverse origin, including the species Enterococcus faecalis, E. faecium, E. casseliflavus, and E. gallinarum.

Collaboration


Dive into the David I. Heiman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Williams

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge