Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiandong Zeng is active.

Publication


Featured researches published by Qiandong Zeng.


Nature Biotechnology | 2011

Full-length transcriptome assembly from RNA-Seq data without a reference genome

Manfred Grabherr; Brian J. Haas; Moran Yassour; Joshua Z. Levin; Dawn Anne Thompson; Ido Amit; Xian Adiconis; Lin Fan; Raktima Raychowdhury; Qiandong Zeng; Zehua Chen; Evan Mauceli; Nir Hacohen; Andreas Gnirke; Nicholas Rhind; Federica Di Palma; Bruce Birren; Chad Nusbaum; Kerstin Lindblad-Toh; Nir Friedman; Aviv Regev

Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature | 2010

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma; H. Charlotte van der Does; Katherine A. Borkovich; Jeffrey J. Coleman; Marie Josée Daboussi; Antonio Di Pietro; Marie Dufresne; Michael Freitag; Manfred Grabherr; Bernard Henrissat; Petra M. Houterman; Seogchan Kang; Won Bo Shim; Charles P. Woloshuk; Xiaohui Xie; Jin-Rong Xu; John Antoniw; Scott E. Baker; Burton H. Bluhm; Andrew Breakspear; Daren W. Brown; Robert A. E. Butchko; Sinéad B. Chapman; Richard M. R. Coulson; Pedro M. Coutinho; Etienne Danchin; Andrew C. Diener; Liane R. Gale; Donald M. Gardiner; Stephen A. Goff

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Nature | 2009

Evolution of pathogenicity and sexual reproduction in eight Candida genomes.

Geraldine Butler; Matthew D. Rasmussen; Michael F. Lin; Manuel A. S. Santos; Sharadha Sakthikumar; Carol A. Munro; Esther Rheinbay; Manfred Grabherr; Anja Forche; Jennifer L. Reedy; Ino Agrafioti; Martha B. Arnaud; Steven Bates; Alistair J. P. Brown; Sascha Brunke; Maria C. Costanzo; David A. Fitzpatrick; Piet W. J. de Groot; David Harris; Lois L. Hoyer; Bernhard Hube; Frans M. Klis; Chinnappa D. Kodira; Nicola Lennard; Mary E. Logue; Ronny Martin; Aaron M. Neiman; Elissavet Nikolaou; Michael A. Quail; Janet Quinn

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/α2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.


PLOS ONE | 2014

Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement.

Bruce J. Walker; Thomas Abeel; Terrance Shea; Margaret Priest; Amr Abouelliel; Sharadha Sakthikumar; Christina A. Cuomo; Qiandong Zeng; Jennifer R. Wortman; Sarah K. Young; Ashlee M. Earl

Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.


PLOS Genetics | 2011

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

Joelle Amselem; Christina A. Cuomo; Jan A. L. van Kan; Muriel Viaud; Ernesto P. Benito; Arnaud Couloux; Pedro M. Coutinho; Ronald P. de Vries; Paul S. Dyer; Sabine Fillinger; Elisabeth Fournier; Lilian Gout; Matthias Hahn; Linda T. Kohn; Nicolas Lapalu; Kim M. Plummer; Jean-Marc Pradier; Emmanuel Quévillon; Amir Sharon; Adeline Simon; Arjen ten Have; Bettina Tudzynski; Paul Tudzynski; Patrick Wincker; Marion Andrew; Véronique Anthouard; Ross E. Beever; Rolland Beffa; Isabelle Benoit; Ourdia Bouzid

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Science | 2010

A catalog of reference genomes from the human microbiome.

Karen E. Nelson; George M. Weinstock; Sarah K. Highlander; Kim C. Worley; Heather Huot Creasy; Jennifer R. Wortman; Douglas B. Rusch; Makedonka Mitreva; Erica Sodergren; Asif T. Chinwalla; Michael Feldgarden; Dirk Gevers; Brian J. Haas; Ramana Madupu; Doyle V. Ward; Bruce Birren; Richard A. Gibbs; Barbara A. Methé; Joseph F. Petrosino; Robert L. Strausberg; Granger Sutton; Owen White; Richard Wilson; Scott Durkin; Michelle G. Giglio; Sharvari Gujja; Clint Howarth; Chinnappa D. Kodira; Nikos C. Kyrpides; Teena Mehta

News from the Inner Tube of Life A major initiative by the U.S. National Institutes of Health to sequence 900 genomes of microorganisms that live on the surfaces and orifices of the human body has established standardized protocols and methods for such large-scale reference sequencing. By combining previously accumulated data with new data, Nelson et al. (p. 994) present an initial analysis of 178 bacterial genomes. The sampling so far barely scratches the surface of the microbial diversity found on humans, but the work provides an important baseline for future analyses. Standardized protocols and methods are being established for large-scale sequencing of the microorganisms living on humans. The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified (“novel”) polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Nature Genetics | 2012

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Richard O'Connell; Michael R. Thon; Stéphane Hacquard; Stefan G. Amyotte; Jochen Kleemann; Maria F. Torres; Ulrike Damm; Ester Buiate; Lynn Epstein; Noam Alkan; Janine Altmüller; Lucia Alvarado-Balderrama; Christopher Bauser; Christian Becker; Bruce W. Birren; Zehua Chen; Jae Young Choi; Jo Anne Crouch; Jonathan P. Duvick; Mark A. Farman; Pamela Gan; David I. Heiman; Bernard Henrissat; Richard J. Howard; Mehdi Kabbage; Christian Koch; Barbara Kracher; Yasuyuki Kubo; Audrey D. Law; Marc-Henri Lebrun

Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


PLOS Pathogens | 2012

Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection

Matthew R. Henn; Christian L. Boutwell; Patrick Charlebois; Niall J. Lennon; Karen A. Power; Alexander R. Macalalad; Aaron M. Berlin; Christine M. Malboeuf; Elizabeth Ryan; Sante Gnerre; Michael C. Zody; Rachel L. Erlich; Lisa Green; Andrew Berical; Yaoyu Wang; Monica Casali; Hendrik Streeck; Allyson K. Bloom; Tim Dudek; Damien C. Tully; Ruchi M. Newman; Karen L. Axten; Adrianne D. Gladden; Laura Battis; Michael Kemper; Qiandong Zeng; Terrance Shea; Sharvari Gujja; Carmen Zedlack; Olivier Gasser

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.

Collaboration


Dive into the Qiandong Zeng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge