Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Bodine is active.

Publication


Featured researches published by David J. Bodine.


Weather and Forecasting | 2013

Tornado Damage Estimation Using Polarimetric Radar

David J. Bodine; Matthew R. Kumjian; Robert D. Palmer; Pamela L. Heinselman; Alexander V. Ryzhkov

AbstractThis study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). Several TDS parameters are examined, including parameters based on the 10th or 90th percentiles of polarimetric variables (lowest tilt TDS parameters) and TDS parameters based on the TDS volumetric coverage (spatial TDS parameters). Two highly detailed National Weather Service (NWS) damage surveys are compared to TDS parameters. The TDS parameters tend to be correlated with the enhanced Fujita scale (EF) rating. The 90th percentile reflectivity, TDS height, and TDS volume increase during tornado intensification and decrease during tornado dissipation. For 14 tornado cases, the maximum or minimum TDS parameter values are compared to the tornado’s EF rating. For tornadoes with a higher EF rating, higher maximum values of the 90th percentile ZHH, TDS height, ...


Bulletin of the American Meteorological Society | 2011

Observations of the 10 May 2010 Tornado Outbreak Using OU-PRIME: Potential for New Science with High-Resolution Polarimetric Radar

Robert D. Palmer; David J. Bodine; Matthew R. Kumjian; Boon Leng Cheong; Guifu Zhang; Qing Cao; Howard B. Bluestein; Alexander V. Ryzhkov; Tian-You Yu; Yadong Wang

A tornado outbreak occurred in central Oklahoma on 10 May 2010, including two tornadoes with enhanced Fujita scale ratings of 4 (EF-4). Tragically, three deaths were reported along with significant property damage. Several strong and violent tornadoes occurred near Norman, Oklahoma, which is a major hub for severe storms research and is arguably one of the best observed regions of the country with multiple Doppler radars operated by both the federal government and the University of Oklahoma (OU). One of the most recent additions to the radars in Norman is the high-resolution OU Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME). As the name implies, the radar is used as a platform for research and education in both science and engineering studies using polarimetric radar. To facilitate usage of the system by students and faculty, OU-PRIME was constructed adjacent to the National Weather Center building on the OU research campus. On 10 May 2010, several tornadoes formed near the c...


Journal of Applied Meteorology and Climatology | 2009

Variability of Surface Air Temperature over Gently Sloped Terrain

David J. Bodine; Petra M. Klein; Sean C. Arms; Alan Shapiro

Abstract Temperature and wind data from a rural micronet and nearby site of the Oklahoma Mesonet are analyzed to study the frequency, strength, and formation processes of cold-pool events in a region with gentle terrain. Spatial analyses were performed for a 2-yr-long temperature record from 26 temperature/humidity surface stations, deployed across a 120 m × 320 m micronet located in a region of gently sloped terrain with maximum elevation changes of ∼25 m. Cold pools frequently formed at the base of a gentle slope in a small depression of only ∼6-m depth that is also sheltered by trees. The strength of each cold-pool event was classified according to a cold-pool index based on average nocturnal temperature perturbations within the cold-pool region. Wind data collected with sonic anemometers on a 15-m-tall tower at the micronet for a period of three months (spring 2005) suggest that flow sheltering by vegetation plays an important role in the cold-pool formation. The wind data also show signatures of kata...


Journal of Atmospheric and Oceanic Technology | 2013

The Atmospheric Imaging Radar: Simultaneous Volumetric Observations Using a Phased Array Weather Radar

Bradley Isom; Robert D. Palmer; Redmond Kelley; John Meier; David J. Bodine; Mark Yeary; Boon Leng Cheong; Yan Zhang; Tian-You Yu; Michael I. Biggerstaff

AbstractMobile weather radars often utilize rapid-scan strategies when collecting observations of severe weather. Various techniques have been used to improve volume update times, including the use of agile and multibeam radars. Imaging radars, similar in some respects to phased arrays, steer the radar beam in software, thus requiring no physical motion. In contrast to phased arrays, imaging radars gather data for an entire volume simultaneously within the field of view (FOV) of the radar, which is defined by a broad transmit beam. As a result, imaging radars provide update rates significantly exceeding those of existing mobile radars, including phased arrays. The Advanced Radar Research Center (ARRC) at the University of Oklahoma (OU) is engaged in the design, construction, and testing of a mobile imaging weather radar system called the atmospheric imaging radar (AIR). Initial tests performed with the AIR demonstrate the benefits and versatility of utilizing beamforming techniques to achieve high spatial...


Journal of Applied Meteorology and Climatology | 2011

Understanding Radar Refractivity: Sources of Uncertainty

David J. Bodine; Dan Michaud; Robert D. Palmer; Pamela L. Heinselman; Jerry Brotzge; Nick Gasperoni; Boon Leng Cheong; Ming Xue; Jidong Gao

AbstractThis study presents a 2-yr-long comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) refractivity retrievals with Oklahoma Mesonetwork (“Mesonet”) and sounding measurements and discusses some challenges to implementing radar refractivity operationally. Temporal and spatial analyses of radar refractivity exhibit high correlation with Mesonet data; however, periods of large refractivity differences between the radar and Mesonet are observed. Several sources of refractivity differences are examined to determine the cause of large refractivity differences. One source for nonklystron radars includes magnetron frequency drift, which can introduce errors up to 10 N-units if the frequency drift is not corrected. Different reference maps made at different times can “shift” refractivity values. A semiautomated method for producing reference maps is presented, including trade-offs for making reference maps under different conditions. Refractivity from six Mesonet stations within the clutter domain...


Journal of Applied Meteorology and Climatology | 2014

Dual-Wavelength Polarimetric Radar Analyses of Tornadic Debris Signatures

David J. Bodine; Robert D. Palmer; Guifu Zhang

AbstractStatistical properties of tornado debris signatures (TDSs) are investigated using S- and C-band polarimetric radar data with comparisons to damage surveys and satellite imagery. Close proximity of the radars to the 10 May 2010 Moore–Oklahoma City, Oklahoma, tornado that was rated as a 4 on the enhanced Fujita scale (EF4) provides a large number of resolution volumes, and good temporal and spatial matching for dual-wavelength comparisons. These comparisons reveal that S-band TDSs exhibit a higher radar reflectivity factor (ZHH) and copolar cross-correlation coefficient (ρhv) than do C-band TDSs. Higher S-band ρhv may result from a smaller ratio of non-Rayleigh scatterers to total scatterers due to the smaller electrical sizes of debris and, consequently, reduced resonance effects. A negative ZDR signature is observed at 350 m AGL at both the S and C bands as the tornado passes over a vegetated area near a large body of water. Another interesting signature is a positive (negative) shift in propagati...


Journal of Applied Meteorology and Climatology | 2010

A Case Study on the Impact of Moisture Variability on Convection Initiation Using Radar Refractivity Retrievals

David J. Bodine; Pamela L. Heinselman; Boon Leng Cheong; Robert D. Palmer; D. Michaud

A case study illustrating the impact of moisture variability on convection initiation in a synoptically active environment without strong moisture gradients is presented. The preconvective environment on 30 April 2007 nearly satisfied the three conditions for convection initiation: moisture, instability, and a low-level lifting mechanism. However, a sounding analysis showed that a low-level inversion layer and high LFC would prevent convection initiation because the convective updraft velocities required to overcome the convective inhibition (CIN) were much higher than updraft velocities typically observed in convergence zones. Radar refractivity retrievals from the Twin Lakes, Oklahoma (KTLX), Weather Surveillance Radar-1988 Doppler (WSR-88D) showed a moisture pool contributing up to a 28C increase in dewpoint temperature where the initial storm-scale convergence was observed. The analysis of the storm-relative wind field revealed that the developing storm ingested the higher moisture associated with the moisture pool. Sounding analyses showed that the moisture pool reduced or nearly eliminated CIN, lowered the LFC by about 500 m, and increased CAPEby 2.5 times. Thus, these small-scalemoisture changes increasedthe likelihoodofconvection initiation within the moisture pool by creating a more favorable thermodynamic environment. The results suggest that refractivity data could improve convection initiation forecasts by assessing moisture variability at finer scales than the current observation network.


Monthly Weather Review | 2015

High-Temporal Resolution Polarimetric X-Band Doppler Radar Observations of the 20 May 2013 Moore, Oklahoma, Tornado

James M. Kurdzo; David J. Bodine; Boon Leng Cheong; Robert D. Palmer

Abstract On 20 May 2013, the cities of Newcastle, Oklahoma City, and Moore, Oklahoma, were impacted by a long-track violent tornado that was rated as an EF5 on the enhanced Fujita scale by the National Weather Service. Despite a relatively sustained long track, damage surveys revealed a number of small-scale damage indicators that hinted at storm-scale processes that occurred over short time periods. The University of Oklahoma (OU) Advanced Radar Research Center’s PX-1000 transportable, polarimetric, X-band weather radar was operating in a single-elevation PPI scanning strategy at the OU Westheimer airport throughout the duration of the tornado, collecting high spatial and temporal resolution polarimetric data every 20 s at ranges as close as 10 km and heights below 500 m AGL. This dataset contains the only known polarimetric radar observations of the Moore tornado at such high temporal resolution, providing the opportunity to analyze and study finescale phenomena occurring on rapid time scales. Analysis ...


Journal of the Atmospheric Sciences | 2016

Sensitivity of Tornado Dynamics to Soil Debris Loading

David J. Bodine; Takashi Maruyama; Robert D. Palmer; Caleb Fulton; Howard B. Bluestein; D. C. Lewellen

AbstractPast numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation.Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range becaus...


Weather and Forecasting | 2009

Radar Refractivity Retrievals in Oklahoma: Insights into Operational Benefits and Limitations

Pamela L. Heinselman; Boon Leng Cheong; Robert D. Palmer; David J. Bodine; K. Hondl

Abstract The 2007 and 2008 spring refractivity experiments at KTLX investigated the potential utility of high-resolution, near-surface refractivity measurements to operational forecasting. During these experiments, forecasters at the Norman, Oklahoma, National Weather Service Forecast Office (NWSFO) assessed refractivity and scan-to-scan refractivity change fields retrieved from the Weather Surveillance Radar-1988 Doppler weather radar near Oklahoma City—Twin Lakes, Oklahoma (KTLX). Both quantitative and qualitative analysis methods were used to analyze the 41 responses from seven forecasters to a questionnaire designed to measure the impact of refractivity fields on forecast operations. The analysis revealed that forecasts benefited from the refractivity fields on 25% of the days included in the evaluation. In each of these cases, the refractivity fields provided complementary information that somewhat enhanced the forecasters’ capability to analyze the near-surface environment and boosted their confiden...

Collaboration


Dive into the David J. Bodine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian-You Yu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Meier

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Mark Yeary

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge