David J. Matson
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Matson.
Journal of Pharmacology and Experimental Therapeutics | 2006
David J. Matson; Daniel C. Broom; Susan R. Carson; James Baldassari; John H. Kehne; Daniel N. Cortright
The majority of rodent models used to evaluate analgesic drug effects rely on evoked measures of nociceptive thresholds as primary outcomes. These approaches are often time-consuming, requiring extensive habituation sessions and repeated presentations of eliciting stimuli, and are prone to false-positive outcomes due to sedation or tester subjectivity. Here, we describe the reduction of spontaneous activity by adjuvant (RSAA) model as an objective and quantifiable behavioral model of inflammatory pain that can predict the analgesic activity of a variety of agents following single-dose administration. In the RSAA model, activity was measured in nonhabituated rats using standard, photocell-based monitors. Bilateral inflammation of the knee joints by complete Freunds adjuvant (CFA) reduced the normal level of activity (horizontal locomotion and vertical rearing) by ∼60% in a novel environment. This reduction in activity was dose-dependently reversed by ibuprofen, rofecoxib, celecoxib, piroxicam, and dexamethasone, whereas gabapentin and amitriptyline were inactive. Morphine significantly reversed the activity-suppressing effects of CFA, at 1 mg/kg s.c., but at higher doses locomotor activity progressively declined, coincident with the induction of sedation. In contrast to morphine and anti-inflammatory therapies, amphetamine did not affect vertical rearing, even though it increased horizontal locomotion. Thus, unlike standard measures of analgesia such as alteration in thermal or mechanical sensitivity, the RSAA model operationally defines analgesia as a drug-induced increase in spontaneous behavior (vertical rearing in a novel environment). We conclude that the RSAA model is valuable as an objective measure of analgesic efficacy that is not dependent on an evoked stimulus response.
PLOS ONE | 2014
Jacinthe Gingras; Sarah Waters Smith; David J. Matson; Danielle Johnson; Kim Nye; Lauren Couture; Elma Feric; Ruoyuan Yin; Bryan D. Moyer; Matthew L. Peterson; James B. Rottman; Rudolph J. Beiler; Annika B. Malmberg
Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund’s adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.
Journal of Pharmacology and Experimental Therapeutics | 2008
Daniel C. Broom; David J. Matson; Elizabeth Bradshaw; Marianne E. Buck; Robin Meade; Susan Coombs; Michele Matchett; Kristen K. Ford; Weifeng Yu; Jun Yuan; Synthia H. Sun; Ricardo Ochoa; James E. Krause; David Juergen Wustrow; Daniel N. Cortright
Recent evidence suggests that the P2X7 receptor may play a role in the pathophysiology of preclinical models of pain and inflammation. Therefore, pharmacological agents that target this receptor may potentially have clinical utility as anti-inflammatory and analgesic therapy. We investigated and characterized the previously reported P2X7 antagonist N-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-benzamide, hydrochloride salt (AACBA; GSK314181A). In vitro, AACBA was a relatively potent inhibitor of both human P2X7-mediated calcium flux and quinolinium,4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triemethylammonio)propyl]-diiodide (YO-PRO-1) uptake assays, with IC50 values of approximately 18 and 85 nM, respectively. Compared with the human receptor, AACBA was less potent at the rat P2X7 receptor, with IC50 values of 29 and 980 nM in the calcium flux and YO-PRO-1 assays, respectively. In acute in vivo models of pain and inflammation, AACBA dose-dependently reduced lipopolysaccharide-induced plasma interleukin-6 release and prevented or reversed carrageenan-induced paw edema and mechanical hypersensitivity. In chronic in vivo models of pain and inflammation, AACBA produced a prophylactic, but not therapeutic-like, prevention of the clinical signs and histopathological damage of collagen-induced arthritis. Finally, AACBA could not reverse L5 spinal nerve ligation-induced tactile allodynia when given therapeutically. Consistent with previous literature, these results suggest that P2X7 receptors do play a role in animal models of pain and inflammation. Further study of P2X7 antagonists both in preclinical and clinical studies will help elucidate the role of the P2X7 receptor in pain and inflammatory mechanisms and may help identify potential clinical benefits of such molecules.
Pain | 2010
BaoXi Gao; Markus Hierl; Kristie Clarkin; Todd Juan; Hung Nguyen; Marissa van der Valk; Hong Deng; Wenhong Guo; Sonya G. Lehto; David J. Matson; Jeff S. McDermott; Johannes Knop; Kevin Gaida; Lei Cao; Dan Waldon; Brian K. Albrecht; Alessandro Boezio; Katrina W. Copeland; Jean-Christophe Harmange; Stephanie K. Springer; Annika B. Malmberg
&NA; Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch‐clamp electrophysiology and a live cell‐based fluorescence assay. Nonselective nicotinic agonists as well as compounds selective either for &agr;4&bgr;2 or for &agr;7 nAChRs were then tested in the formalin and complete Freunds adjuvant models of pain. Nonselective nAChR agonists ABT‐594 and varenicline were effective analgesics. By contrast, the selective &agr;4&bgr;2 agonist ispronicline and a novel &agr;4&bgr;2‐selective potentiator did not appear to produce analgesia in either model. &agr;7‐selective agonists reduced the pain‐related endpoint, but the effect could be ascribed to nonspecific reduction of movement rather than to analgesia. Neither selective nor nonselective &agr;7 nicotinic agonists affected the release of pro‐inflammatory cytokines in response to antigen challenge. Electrophysiological recordings from spinal cord slice showed a strong nicotine‐induced increase in inhibitory synaptic transmission that was mediated partially by &agr;4&bgr;2 and only minimally by &agr;7 subtypes. Taken with previous studies, the results suggest that agonism of &agr;4&bgr;2 nAChRs is necessary but not sufficient to produce analgesia, and that the spinal cord is a key site where the molecular action of nAChRs produces analgesia.
Journal of Medicinal Chemistry | 2011
Howard Bregman; Loren Berry; John L. Buchanan; April Chen; Bingfan Du; Elma Feric; Markus Hierl; Liyue Huang; David Immke; Brett Janosky; Danielle Johnson; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Peter Miu; Hanh Nho Nguyen; Vinod F. Patel; Daniel Waldon; Ben Wilenkin; Xiao Mei Zheng; Anruo Zou; Erin F. DiMauro
Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.
Nature Structural & Molecular Biology | 2017
Xin Huang; Paul L. Shaffer; Shawn Ayube; Howard Bregman; Hao Chen; Sonya G. Lehto; Jason Luther; David J. Matson; Klaus Michelsen; Matthew Plant; Stephen H. Schneider; Jeffrey R. Simard; Yohannes Teffera; Shuyan Yi; Maosheng Zhang; Erin F. DiMauro; Jacinthe Gingras
Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.
Journal of Medicinal Chemistry | 2010
Charles A. Blum; Timothy M. Caldwell; Xiaozhang Zheng; Rajagopal Bakthavatchalam; Scott M. Capitosti; Harry Brielmann; Stéphane De Lombaert; Mark T. Kershaw; David J. Matson; James E. Krause; Daniel N. Cortright; Marci Crandall; William J. Martin; Beth Ann Murphy; Susan Boyce; A. Brian Jones; Glenn Mason; Wayne Rycroft; Helen Perrett; Rachael Conley; Nicola Burnaby-Davies; Bertrand L. Chenard; Kevin J. Hodgetts
The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is a nonselective cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. The design and synthesis of a series of novel TRPV1 antagonists with a variety of different 6,6-heterocyclic cores is described, and an extensive evaluation of the pharmacological and pharmacokinetic properties of a number of these compounds is reported. For example, the 1,8-naphthyridine 52 was characterized as an orally bioavailable and brain penetrant TRPV1 antagonist. In vivo, 52 fully reversed carrageenan-induced thermal hyperalgesia (CITH) in rats and dose-dependently potently reduced complete Freunds adjuvant (CFA) induced chronic inflammatory pain after oral administration.
Journal of Pharmacology and Experimental Therapeutics | 2017
Thomas Kornecook; Ruoyuan Yin; Stephen Altmann; Xuhai Be; Virginia Berry; Christopher P. Ilch; Michael Jarosh; Danielle Johnson; Josie H. Lee; Sonya G. Lehto; Joseph Ligutti; Dong Liu; Jason Luther; David J. Matson; Danny Ortuno; John Roberts; Kristin Taborn; Jinti Wang; Matthew Weiss; Violeta Yu; Dawn Zhu; Robert T. Fremeau; Bryan D. Moyer
Potent and selective antagonists of the voltage-gated sodium channel NaV1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human NaV1.7 channels with an IC50 of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC50 of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other NaV family members, including NaV1.4 expressed in muscle and NaV1.5 expressed in the heart, as well as TTX-resistant NaV channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple NaV1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn–induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective NaV1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.
Bioorganic & Medicinal Chemistry Letters | 2012
Hanh Nho Nguyen; Howie Bregman; John L. Buchanan; Bingfan Du; Elma Feric; Liyue Huang; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Vinod F. Patel; Ben Wilenkin; Anruo Zou; Erin F. DiMauro
Clinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays. Herein we describe the discovery, optimization, and SAR of potent aminopyrimidinone Nav1.7 antagonists using electrophysiology-based assays that measure the ligand-receptor interaction directly. Within this series, rapid functionalization at the polysubstituted aminopyrimidinone head group enabled exploration of SAR and of pharmacokinetic properties. Lead optimized N-Me-aminopyrimidinone 9 exhibited improved Nav1.7 potency, minimal off-target hERG liability, and improved rat PK properties.
Methods of Molecular Biology | 2010
David J. Matson; Daniel C. Broom; Daniel N. Cortright
Creating a robust and unbiased assay for the study of current and novel analgesics has been a daunting task. Traditional rodent models of pain and inflammation typically rely on a negative reaction to various forms of evoked stimuli to elicit a pain response and are subject to rater interpretation. Recently, models such as weight bearing and gait analysis have been developed to address these drawbacks while detecting a drugs analgesic properties. We have recently developed the Reduction of Spontaneous Activity by Adjuvant (RSAA) model as a quick, unbiased method for the testing of potential analgesics. Rats, following prior administration of an activity-decreasing inflammatory insult, will positively increase spontaneous locomotor exploration when given single doses of known analgesics. The RSAA model capitalizes on a rats spontaneous exploratory behavior in a novel environment with the aid of computer tracking software to quantify movement and eliminate rater bias.