Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff S. McDermott is active.

Publication


Featured researches published by Jeff S. McDermott.


Pain | 2010

Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain.

BaoXi Gao; Markus Hierl; Kristie Clarkin; Todd Juan; Hung Nguyen; Marissa van der Valk; Hong Deng; Wenhong Guo; Sonya G. Lehto; David J. Matson; Jeff S. McDermott; Johannes Knop; Kevin Gaida; Lei Cao; Dan Waldon; Brian K. Albrecht; Alessandro Boezio; Katrina W. Copeland; Jean-Christophe Harmange; Stephanie K. Springer; Annika B. Malmberg

&NA; Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch‐clamp electrophysiology and a live cell‐based fluorescence assay. Nonselective nicotinic agonists as well as compounds selective either for &agr;4&bgr;2 or for &agr;7 nAChRs were then tested in the formalin and complete Freunds adjuvant models of pain. Nonselective nAChR agonists ABT‐594 and varenicline were effective analgesics. By contrast, the selective &agr;4&bgr;2 agonist ispronicline and a novel &agr;4&bgr;2‐selective potentiator did not appear to produce analgesia in either model. &agr;7‐selective agonists reduced the pain‐related endpoint, but the effect could be ascribed to nonspecific reduction of movement rather than to analgesia. Neither selective nor nonselective &agr;7 nicotinic agonists affected the release of pro‐inflammatory cytokines in response to antigen challenge. Electrophysiological recordings from spinal cord slice showed a strong nicotine‐induced increase in inhibitory synaptic transmission that was mediated partially by &agr;4&bgr;2 and only minimally by &agr;7 subtypes. Taken with previous studies, the results suggest that agonism of &agr;4&bgr;2 nAChRs is necessary but not sufficient to produce analgesia, and that the spinal cord is a key site where the molecular action of nAChRs produces analgesia.


Journal of Medicinal Chemistry | 2011

Identification of a potent, state-dependent inhibitor of Nav1.7 with oral efficacy in the formalin model of persistent pain.

Howard Bregman; Loren Berry; John L. Buchanan; April Chen; Bingfan Du; Elma Feric; Markus Hierl; Liyue Huang; David Immke; Brett Janosky; Danielle Johnson; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Peter Miu; Hanh Nho Nguyen; Vinod F. Patel; Daniel Waldon; Ben Wilenkin; Xiao Mei Zheng; Anruo Zou; Erin F. DiMauro

Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery and optimization of substituted piperidines as potent, selective, CNS-penetrant α4β2 nicotinic acetylcholine receptor potentiators

Brian K. Albrecht; Virginia Berry; Alessandro Boezio; Lei Cao; Kristie Clarkin; Wenhong Guo; Jean-Christophe Harmange; Markus Hierl; Liyue Huang; Brett Janosky; Johannes Knop; Annika B. Malmberg; Jeff S. McDermott; Hung Q. Nguyen; Stephanie K. Springer; Daniel Waldon; Katrina S. Woodin

The discovery of a series of small molecule alpha4beta2 nAChR potentiators is reported. The structure-activity relationship leads to potent compounds selective against nAChRs including alpha3beta2 and alpha3beta4 and optimized for CNS penetrance. Compounds increased currents through recombinant alpha4beta2 nAChRs, yet did not compete for binding with the orthosteric ligand cytisine. High potency and efficacy on the rat channel combined with good PK properties will allow testing of the alpha4beta2 potentiator mechanism in animal models of disease.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and hit-to-lead optimization of pyrrolopyrimidines as potent, state-dependent Nav1.7 antagonists

Nagasree Chakka; Howie Bregman; Bingfan Du; Hanh Nho Nguyen; John L. Buchanan; Elma Feric; Joseph Ligutti; Dong Liu; Jeff S. McDermott; Anruo Zou; Erin F. DiMauro

Herein we describe the discovery, optimization, and structure-activity relationships of novel potent pyrrolopyrimidine Na(v)1.7 antagonists. Hit-to-lead SAR studies of the pyrrolopyrimidine core, head, and tail groups of the molecule led to the identification of pyrrolopyrimidine 48 as exceptionally potent Na(v)1.7 blocker with good selectivity over hERG and improved microsomal stability relative to our hit molecule and pyrazolopyrimidine 8 as a promising starting point for future optimization efforts.


Bioorganic & Medicinal Chemistry Letters | 2012

The discovery of aminopyrazines as novel, potent Nav1.7 antagonists: Hit-to-lead identification and SAR

Howard Bregman; Hanh Nho Nguyen; Elma Feric; Joseph Ligutti; Dong Liu; Jeff S. McDermott; Ben Wilenkin; Anruo Zou; Liyue Huang; Xingwen Li; Erin F. DiMauro

Herein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity. The compact structure of 1 offered a modular synthetic strategy towards a broad structure-activity relationship analysis. This analysis led to the identification of aminopyrazine 41, which had vastly improved hERG selectivity and pharmacokinetic properties.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and optimization of aminopyrimidinones as potent and state-dependent Nav1.7 antagonists

Hanh Nho Nguyen; Howie Bregman; John L. Buchanan; Bingfan Du; Elma Feric; Liyue Huang; Xingwen Li; Joseph Ligutti; Dong Liu; Annika B. Malmberg; David J. Matson; Jeff S. McDermott; Vinod F. Patel; Ben Wilenkin; Anruo Zou; Erin F. DiMauro

Clinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays. Herein we describe the discovery, optimization, and SAR of potent aminopyrimidinone Nav1.7 antagonists using electrophysiology-based assays that measure the ligand-receptor interaction directly. Within this series, rapid functionalization at the polysubstituted aminopyrimidinone head group enabled exploration of SAR and of pharmacokinetic properties. Lead optimized N-Me-aminopyrimidinone 9 exhibited improved Nav1.7 potency, minimal off-target hERG liability, and improved rat PK properties.


PLOS ONE | 2015

Inhibition of Inactive States of Tetrodotoxin-Sensitive Sodium Channels Reduces Spontaneous Firing of C-Fiber Nociceptors and Produces Analgesia in Formalin and Complete Freund’s Adjuvant Models of Pain

David J. Matson; Darryl T. Hamamoto; Howard Bregman; Melanie Cooke; Erin F. DiMauro; Liyue Huang; Danielle Johnson; Xingwen Li; Jeff S. McDermott; Carrie Morgan; Ben Wilenkin; Annika B. Malmberg; Donald A. Simone

While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported “compound 52” aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund’s adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and activity of substituted carbamates as potentiators of the α4β2 nicotinic acetylcholine receptor

Stephanie K. Springer; Katrina S. Woodin; Virginia Berry; Alessandro Boezio; Lei Cao; Kristie Clarkin; Jean-Christophe Harmange; Markus Hierl; Johannes Knop; Annika B. Malmberg; Jeff S. McDermott; Hung Q. Nguyen; Daniel Waldon; Brian K. Albrecht

The synthesis and structure-activity relationship of a series of carbamate potentiators of alpha4beta2 nAChR is reported herein. These compounds were highly selective for alpha4beta2 over other nAChR subtypes. In addition, compounds increased the response of alpha4beta2 nAChRs to acetylcholine, as measured with patch-clamp electrophysiology.


Journal of Medicinal Chemistry | 2017

Targeting the Nerve Growth Factor (NGF) Pathway in Drug Discovery. Potential Applications to New Therapies for Chronic Pain

Bryan H. Norman; Jeff S. McDermott

The neurotrophin nerve growth factor (NGF) has been implicated as a key mediator of chronic pain. NGF binds the tropomysin receptor kinase A (TrkA) and p75, resulting in the activation of downstream signaling pathways that have been linked to pro-nociception. While anti-NGF antibodies have demonstrated analgesia both preclinically and in patients, the mechanism of action of these agents remains unclear. We describe ligands targeting NGF, its receptors, and downstream/related targets. This Perspective highlights large and small molecule approaches to targeting the NGF-TrkA pathway both extra- and intracellularly. In addition, we present a strategic framework for future drug discovery efforts in this pathway beyond the targeting of NGF or its receptors. While existing tools have greatly informed NGF-mediated signaling, ongoing and future pathway research may help focus new drug discovery efforts on key novel targets and mechanisms. This may result in highly differentiated therapeutics with greater efficacy and/or improved safety profiles.


Bioorganic & Medicinal Chemistry Letters | 2017

The discovery of benzoxazine sulfonamide inhibitors of NaV1.7: Tools that bridge efficacy and target engagement

Daniel S. La; Emily A. Peterson; Christiane Bode; Alessandro Boezio; Howard Bregman; Margaret Yuhua Chu-Moyer; James R. Coats; Erin F. DiMauro; Thomas Dineen; Bingfan Du; Hua Gao; Russell Graceffa; Hakan Gunaydin; Angel Guzman-Perez; Robert T. Fremeau; Xin Huang; Christopher P. Ilch; Thomas Kornecook; Charles Kreiman; Joseph Ligutti; Min-Hwa Jasmine Lin; Jeff S. McDermott; Isaac E. Marx; David J. Matson; Bryan D. Moyer; Hanh Nho Nguyen; Kristin Taborn; Violeta Yu; Matthew Weiss

The voltage-gated sodium channel NaV1.7 has received much attention from the scientific community due to compelling human genetic data linking gain- and loss-of-function mutations to pain phenotypes. Despite this genetic validation of NaV1.7 as a target for pain, high quality pharmacological tools facilitate further understanding of target biology, establishment of target coverage requirements and subsequent progression into the clinic. Within the sulfonamide class of inhibitors, reduced potency on rat NaV1.7 versus human NaV1.7 was observed, rendering in vivo rat pharmacology studies challenging. Herein, we report the discovery and optimization of novel benzoxazine sulfonamide inhibitors of human, rat and mouse NaV1.7 which enabled pharmacological assessment in traditional behavioral rodent models of pain and in turn, established a connection between formalin-induced pain and histamine-induced pruritus in mice. The latter represents a simple and efficient means of measuring target engagement.

Collaboration


Dive into the Jeff S. McDermott's collaboration.

Researchain Logo
Decentralizing Knowledge