Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David K. Crossman is active.

Publication


Featured researches published by David K. Crossman.


PLOS Pathogens | 2009

Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response

Amit Singh; David K. Crossman; Deborah Mai; Loni Guidry; Martin I. Voskuil; Matthew B. Renfrow; Adrie J. C. Steyn

The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.


PLOS ONE | 2010

Abundant Lipid and Protein Components of Drusen

Lan Wang; Mark E. Clark; David K. Crossman; Kyoko Kojima; Jeffrey D. Messinger; James A. Mobley; Christine A. Curcio

Background Drusen are extracellular lesions characteristic of aging and age-related maculopathy, a major retinal disease of the elderly. We determined the relative proportions of lipids and proteins in drusen capped with retinal pigment epithelium (RPE) and in RPE isolated from non-macular regions of 36 human retinas with grossly normal maculas obtained <6 hr after death. Methodology/Principal Findings Druse pellets were examined by light and electron microscopy. Component proteins were extracted using novel methods for preserved tissues, separated, subjected to tryptic digestion and LC-MS(MS)2 analysis using an ion trap mass spectrometer, and identified with reference to databases. Lipid classes were separated using thin layer chromatography and quantified by densitometry. Major druse components were esterified cholesterol (EC), phosphatidylcholine (PC), and protein (37.5±13.7, 36.9±12.9, and 43.0±11.5 ng/druse, respectively). Lipid-containing particles (median diameter, 77 nm) occupied 37–44% of druse volume. Major proteins include vitronectin, complement component 9, apoE, and clusterin, previously seen in drusen, and ATP synthase subunit β, scavenger receptor B2, and retinol dehydrogenase 5, previously seen in RPE. Drusen and RPE had similar protein profiles, with higher intensities and greater variability in drusen. C8, part of the complement membrane attack complex, was localized in drusen by immunofluorescence. Conclusions/Significance At least 40% of druse content is comprised by lipids dominated by EC and PC, 2 components that are potentially accounted for by just one pathway, the secretion of lipoproteins by RPE. Manipulating genes encoding apolipoprotein pathways would be a fruitful approach to producing drusen with high EC content in laboratory animals. Therapies that directly mitigate drusen should prepare for the substantial volume of neutral lipids. The catalog of major druse proteins is nearing completion.


Journal of Biological Chemistry | 2008

Heme Oxygenase-1-derived Carbon Monoxide Induces the Mycobacterium tuberculosis Dormancy Regulon

Ashwani Kumar; Jessy Deshane; David K. Crossman; Subhashini Bolisetty; Bo-Shiun Yan; Igor Kramnik; Anupam Agarwal; Adrie J. C. Steyn

The mechanisms that allow Mycobacterium tuberculosis (Mtb) to persist in human tissue for decades and to then abruptly cause disease are not clearly understood. Regulatory elements thought to assist Mtb to enter such a state include the heme two-component sensor kinases DosS and DosT and the cognate response regulator DosR. We have demonstrated previously that O2, nitric oxide (NO), and carbon monoxide (CO) are regulatory ligands of DosS and DosT. Here, we show that in addition to O2 and NO, CO induces the complete Mtb dormancy (Dos) regulon. Notably, we demonstrate that CO is primarily sensed through DosS to induce the Dos regulon, whereas DosT plays a less prominent role. We also show that Mtb infection of macrophage cells significantly increases the expression, protein levels, and enzymatic activity of heme oxygenase-1 (HO-1, the enzyme that produces CO), in an NO-independent manner. Furthermore, exploiting HO-1+/+ and HO-1-/- bone marrow-derived macrophages, we demonstrate that physiologically relevant levels of CO induce the Dos regulon. Finally, we demonstrate that increased HO-1 mRNA and protein levels are produced in the lungs of Mtb-infected mice. Our data suggest that during infection, O2, NO, and CO are being sensed concurrently rather than independently via DosS and DosT. We conclude that CO, a previously unrecognized host factor, is a physiologically relevant Mtb signal capable of inducing the Dos regulon, which introduces a new paradigm for understanding the molecular basis of Mtb persistence.


American Journal of Respiratory and Critical Care Medicine | 2012

Altered DNA Methylation Profile in Idiopathic Pulmonary Fibrosis

Yan Y. Sanders; Namasivayam Ambalavanan; Brian Halloran; Xiangyu Zhang; Hui Liu; David K. Crossman; Molly S. Bray; Kui Zhang; Victor J. Thannickal; James S. Hagood

RATIONALE DNA methylation is an important epigenetic mechanism, which often occurs in response to environmental stimuli and is crucial in regulating gene expression. It is likely that epigenetic alterations contribute to pathogenesis in idiopathic pulmonary fibrosis (IPF). OBJECTIVES To determine the DNA methylation changes in IPF and their effects on gene expression. METHODS Total DNA methylation and DNA methyltransferase expression were compared in IPF and normal control lung tissues. IPF and normal tissues were subjected to comparative analysis of genome-wide DNA methylation and RNA expression using DNA hybridization to the Illumina HumanMethylation27 BeadChip and RNA hybridization to Illumina HumanHT-12 BeadChip. Functional analyses of differentially expressed and differentially methylated genes were done. Selected genes were validated at DNA, RNA, and protein levels. MEASUREMENTS AND MAIN RESULTS DNA methylation status was altered in IPF. IPF samples demonstrated higher DNA methyltransferase expression without observed alterations in global DNA methylation. Genome-wide differences in DNA methylation status and RNA expression were demonstrated by array hybridization. Among the genes whose DNA methylation status and RNA expression were both significantly altered, 16 genes were hypermethylated in DNA associated with decreased mRNA expression or vice versa. We validated CLDN5, ZNF467, TP53INP1, and DDAH1 genes at the level of DNA methylation status, RNA, and protein-level expression. CONCLUSIONS Changes in DNA methylation correspond to altered mRNA expression of a number of genes, some with known and others with previously uncharacterized roles in IPF, suggesting that DNA methylation is important in the pathogenesis of IPF.


Nature Genetics | 2014

Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas

Arkadiusz Piotrowski; Jing Xie; Ying F. Liu; Andrzej Poplawski; Alicia Gomes; Piotr Madanecki; Chuanhua Fu; Michael R. Crowley; David K. Crossman; Linlea Armstrong; Dusica Babovic-Vuksanovic; Amanda L. Bergner; Jaishri O. Blakeley; Andrea L. Blumenthal; Molly S. Daniels; Howard Feit; Kathy Gardner; Stephanie Hurst; Christine Kobelka; Chung Lee; Rebecca Nagy; Katherine A. Rauen; John M. Slopis; Pim Suwannarat; Judith A. Westman; Andrea Zanko; Bruce R. Korf; Ludwine Messiaen

Constitutional SMARCB1 mutations at 22q11.23 have been found in ∼50% of familial and <10% of sporadic schwannomatosis cases. We sequenced highly conserved regions along 22q from eight individuals with schwannomatosis whose schwannomas involved somatic loss of one copy of 22q, encompassing SMARCB1 and NF2, with a different somatic mutation of the other NF2 allele in every schwannoma but no mutation of the remaining SMARCB1 allele in blood and tumor samples. LZTR1 germline mutations were identified in seven of the eight cases. LZTR1 sequencing in 12 further cases with the same molecular signature identified 9 additional germline mutations. Loss of heterozygosity with retention of an LZTR1 mutation was present in all 25 schwannomas studied. Mutations segregated with disease in all available affected first-degree relatives, although four asymptomatic parents also carried an LZTR1 mutation. Our findings identify LZTR1 as a gene predisposing to an autosomal dominant inherited disorder of multiple schwannomas in ∼80% of 22q-related schwannomatosis cases lacking mutation in SMARCB1.


Journal of Biological Chemistry | 2011

The Unfolded Protein Response (UPR)-activated Transcription Factor X-box-binding Protein 1 (XBP1) Induces MicroRNA-346 Expression That Targets the Human Antigen Peptide Transporter 1 (TAP1) mRNA and Governs Immune Regulatory Genes

Rafal Bartoszewski; Joseph W. Brewer; Andras Rab; David K. Crossman; Sylwia Bartoszewska; Niren Kapoor; Catherine M. Fuller; James F. Collawn; Zsuzsa Bebok

Background: The adaptive unfolded protein response (UPR) promotes endoplasmic reticulum (ER) expansion and reduces ER load. Results: UPR-activated XBP1 induces miR-346 expression that targets TAP1. Conclusion: We identify a novel function for XBP1 and an miRNA-mediated pathway for ER load reduction through TAP1. Significance: Novel interventions for protein folding disorders will require an understanding of how microRNAs regulate gene expression during ER stress. To identify endoplasmic reticulum (ER) stress-induced microRNAs (miRNA) that govern ER protein influx during the adaptive phase of unfolded protein response, we performed miRNA microarray profiling and analysis in human airway epithelial cells following ER stress induction using proteasome inhibition or tunicamycin treatment. We identified miR-346 as the most significantly induced miRNA by both classic stressors. miR-346 is encoded within an intron of the glutamate receptor ionotropic delta-1 gene (GRID1), but its ER stress-associated expression is independent of GRID1. We demonstrated that the spliced X-box-binding protein-1 (sXBP1) is necessary and sufficient for ER stress-associated miR-346 induction, revealing a novel role for this unfolded protein response-activated transcription factor. In mRNA profiling arrays, we identified 21 mRNAs that were reduced by both ER stress and miR-346. The target genes of miR-346 regulate immune responses and include the major histocompatibility complex (MHC) class I gene products, interferon-induced genes, and the ER antigen peptide transporter 1 (TAP1). Although most of the repressed mRNAs appear to be indirect targets because they lack specific seeding sites for miR-346, we demonstrate that the human TAP1 mRNA is a direct target of miR-346. The human TAP1 mRNA 3′-UTR contains a 6-mer canonical seeding site for miR-346. Importantly, the ER stress-associated reduction in human TAP1 mRNA and protein levels could be reversed with an miR-346 antagomir. Because TAP function is necessary for proper MHC class I-associated antigen presentation, our results provide a novel mechanistic explanation for reduced MHC class I-associated antigen presentation that was observed during ER stress.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction

Elizabeth Lopez; Janusz H. Kabarowski; Kevin A. Ingle; Vasundhara Kain; Stephen Barnes; David K. Crossman; Merry L. Lindsey; Ganesh V. Halade

Polyunsaturated fatty acid (PUFA) intake has increased over the last 100 yr, contributing to the current obesogenic environment. Obesity and aging are prominent risk factors for myocardial infarction (MI). How obesity interacts with aging to alter the post-MI response, however, is unclear. We tested the hypothesis that obesity in aging mice would impair the resolution of post-MI inflammation. PUFA diet (PUFA aging group) feeding to 12-mo-old C57BL/6J mice for 5 mo showed higher fat mass compared with standard lab chow (LC)-fed young (LC young group; 3-5 mo old) or aging alone control mice (LC aging group). LC young, LC aging, and PUFA aging mice were subjected to coronary artery ligation to induce MI. Despite similar infarct areas post-MI, plasma proteomic profiling revealed higher VCAM-1 in the PUFA aging group compared with LC young and LC aging groups, leading to increased neutrophil infiltration in the PUFA aging group (P<0.05). Macrophage inflammatory protein-1γ and CD40 were also increased at day 1, and myeloperoxidase remained elevated at day 5, an observation consistent with delayed wound healing in the PUFA aging group. Lipidomic analysis showed higher levels of arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid at day 1 post-MI in the PUFA aging group compared with the LC aging group (all P<0.05), thereby mediating neutrophil extravasation in the PUFA aging group. The inflammation-resolving enzymes 5-lipoxygenase, cyclooxygenase-2, and heme oxyegnase-1 were altered to delay wound healing post-MI in the PUFA aging group compared with LC young and LC aging groups. PUFA aging magnifies the post-MI inflammatory response and impairs the healing response by stimulating prolonged neutrophil trafficking and proinflammatory lipid mediators.


Pediatric Blood & Cancer | 2011

Hedgehog Pathway Activity in Pediatric Embryonal Rhabdomyosarcoma and Undifferentiated Sarcoma: A Report from the Children’s Oncology Group

Joseph G. Pressey; James R. Anderson; David K. Crossman; James C. Lynch; Frederic G. Barr

Aberrant activation of the hedgehog (Hh) signaling pathway is implicated widely in both pediatric and adult malignancies. Inactivation of the Hh regulator PTCH is responsible for the Gorlin cancer predisposition syndrome. The spectrum of tumors found in Gorlin Syndrome includes basal cell carcinoma, medulloblastoma, and rarely, rhabdomyosarcoma (RMS). A previous report utilizing in situ hybridization has provided initial evidence for the expression of Hh targets GLI1 and PTCH in RMS tumors.


Current protocols in human genetics | 2014

Getting Started with Microbiome Analysis: Sample Acquisition to Bioinformatics

Ranjit Kumar; Peter Eipers; Rebecca B. Little; Michael R. Crowley; David K. Crossman; Elliot J. Lefkowitz; Casey D. Morrow

Historically, in order to study microbes, it was necessary to grow them in the laboratory. It was clear though that many microbe communities were refractory to study because none of the members could be grown outside of their native habitat. The development of culture‐independent methods to study microbiota using high‐throughput sequencing of the 16S ribosomal RNA gene variable regions present in all prokaryotic organisms has provided new opportunities to investigate complex microbial communities. In this unit, the process for a microbiome analysis is described. Many of the components required for this process may already exist. A pipeline is described for acquisition of samples from different sites on the human body, isolation of microbial DNA, and DNA sequencing using the Illumina MiSeq sequencing platform. Finally, a new analytical workflow for basic bioinformatics data analysis, QWRAP, is described, which can be used by clinical and basic science investigators. Curr. Protoc. Hum. Genet. 82:18.8.1‐18.8.29.


PLOS ONE | 2013

WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

Wen Jiang; David K. Crossman; Elizabeth H. Mitchell; Philip Sohn; Michael R. Crowley; Rosa Serra

Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq) to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

Collaboration


Dive into the David K. Crossman's collaboration.

Top Co-Authors

Avatar

Michael R. Crowley

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eddy S. Yang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly S. Bray

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Peter Eipers

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ranjit Kumar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard Kirkman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sunil Sudarshan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Adrie J. C. Steyn

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge