Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Bain is active.

Publication


Featured researches published by David L. Bain.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Trimeric structure for an essential protein in L1 retrotransposition

Sandra L. Martin; Dan Branciforte; David Keller; David L. Bain

Two proteins are encoded by the mammalian retrotransposon long interspersed nuclear element 1 (LINE-1 or L1); both are essential for retrotransposition. The function of the protein encoded by the 5′-most ORF, ORF1p, is incompletely understood, although the ORF1p from mouse L1 is known to bind single-stranded nucleic acids and function as a nucleic acid chaperone. ORF1p self-associates by means of a long coiled-coil domain in the N-terminal region of the protein, and the basic, C-terminal region (C-1/3 domain) contains the nucleic acid binding activity. The full-length and C-1/3 domains of ORF1p were purified to near homogeneity then analyzed by gel filtration chromatography and analytical ultracentrifugation. Both proteins were structurally homogeneous and asymmetric in solution, with the full-length version forming a stable trimer and the C-1/3 domain remaining a monomer. Examination of the full-length protein by atomic force microscopy revealed an asymmetric dumbbell shape, congruent with the chromatography and ultracentrifugation results. These structural features are compatible with the nucleic acid binding and chaperone activities of L1 ORF1p and offer further insight into the functions of this unique protein during LINE-1 retrotransposition.


Journal of Biological Chemistry | 2000

The N-terminal Region of the Human Progesterone A-receptor STRUCTURAL ANALYSIS AND THE INFLUENCE OF THE DNA BINDING DOMAIN

David L. Bain; M A Franden; James L. McManaman; Glenn S. Takimoto; Kathryn B. Horwitz

The role of the N-terminal region in nuclear receptor function was addressed by a biochemical and biophysical analysis of the progesterone receptor A-isoform lacking only the hormone binding domain (NT-A). Sedimentation studies demonstrate that NT-A is quantitatively monomeric, with a highly asymmetric shape. Contrary to dogma, the N-terminal region is structured as demonstrated by limited proteolysis. However, N-terminal structure is strongly stabilized by the DNA binding domain, possibly explaining the lack of structure seen in isolated activation domains. Upon DNA binding, NT-A undergoes N-terminal mediated assembly, suggestive of DNA-induced allostery, and consistent with changes in protease accessibility of sites outside the DNA binding domain. Microsequencing reveals that protease-accessible regions are limited to previously identified phosphorylation motifs and to functional domain boundaries.


Journal of Biological Chemistry | 2001

The N-terminal Region of Human Progesterone B-receptors BIOPHYSICAL AND BIOCHEMICAL COMPARISON TO A-RECEPTORS

David L. Bain; M A Franden; James L. McManaman; Glenn S. Takimoto; Kathryn B. Horwitz

To understand the basis for functional differences between the two human progesterone receptors (PR), we have carried out a detailed biochemical and biophysical analysis of the N-terminal region of each isoform. Extending our previous work on the A-isoform (Bain, D. L, Franden, M. A., McManaman, J. L., Takimoto, G. S., and Horwitz, K. B. (2000) J. Biol. Chem. 275, 7313–7320), here we present studies on the N-terminal region of the B-isoform (NT-B) and compare its properties to its A-receptor counterpart (NT-A). As seen previously with NT-A, NT-B is quantitatively monomeric in solution, yet undergoes N-terminal-mediated assembly upon DNA binding. Limited proteolysis, microsequencing, and sedimentation analyses indicate that the B-isoform exists in a non-globular, extended conformation very similar to that of NT-A. Additionally, the 164 amino acids unique to the B-isoform (BUS) appear to be in a more extended conformation relative to sequences common to both receptors and do not exist as an independent structural domain. However, sedimentation studies of NT-A and NT-B show differences in the ensemble distribution of their conformational states. We hypothesize that isoform-specific functional differences are not due to structural differences, per se. Rather, the transcriptional element BUS, or possibly other transcription factors, causes a redistribution of the conformational ensemble by stabilizing a more functionally active set of conformations in NT-B.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Functional properties of the N-terminal region of progesterone receptors and their mechanistic relationship to structure ☆

Glenn S. Takimoto; Lin Tung; Hany Abdel-Hafiz; Michael G Abel; Carol A. Sartorius; Jennifer K. Richer; Britta M. Jacobsen; David L. Bain; Kathryn B. Horwitz

Progesterone receptors (PR) are present in two isoforms, PR-A and PR-B. The B-upstream segment (BUS) of PR-B is a 164 amino acid N-terminal extension that is missing in PR-A and is responsible for the functional differences reported between the two isoforms. BUS contains an activation function (AF3) which is defined by a core domain between residues 54-154 whose activity is dependent upon a single Trp residue and two LXXLL motifs. We have also identified sites both within and outside of BUS that repress the strong synergism between AF3 and AF1 in the N-terminal region and AF2 in the hormone binding domain. One of these repressor sites is a consensus binding motif for the small ubiquitin-like modifier protein, SUMO-1 (387IKEE). The DNA binding domain (DBD) structure is also important for function. When BUS is linked to the glucocorticoid receptor DBD, AF3 activity is substantially attenuated, suggesting that binding to a DNA response element results in allosteric communication between the DBD and N-terminal functional regions. Lastly, biochemical and biophysical analyses of highly purified PR-B and PR-A N-terminal regions reveal that they are unstructured unless the DBD is present. Thus, the DBD stabilizes N-terminal structure. We propose a model in which the DBD through DNA binding, and BUS through protein-protein interactions, stabilize active receptor conformers within an ensemble distribution of active and inactive conformational states. This would explain why PR-B are stronger transactivators than PR-A.


Steroids | 2000

Nuclear receptor conformation, coregulators, and tamoxifen-resistant breast cancer

J.Dinny Graham; David L. Bain; Jennifer K. Richer; Twila A. Jackson; Lin Tung; Kathryn B. Horwitz

The development of tamoxifen resistance and consequent disease progression are common occurrences in breast cancers, often despite the continuing expression of estrogen receptors (ER). Tamoxifen is a mixed antagonist, having both agonist and antagonist properties. We have suggested that the development of tamoxifen resistance is associated with an increase in its agonist-like properties, resulting in loss of antagonist effects or even inappropriate tumor stimulation. Nuclear receptor function is influenced by a family of transcriptional coregulators, that either enhance or suppress transcriptional activity. Using a mixed antagonist-biased two-hybrid screening strategy, we identified two such proteins: the human homolog of the nuclear receptor corepressor, N-CoR, and a novel coactivator, L7/SPA (Switch Protein for Antagonists). In transcriptional studies, N-CoR suppressed the agonist properties of tamoxifen and RU486, and L7/SPA increased agonist effects. We speculated that the relative levels of these coactivators and corepressors may determine the balance of agonist and antagonist properties of mixed antagonists, such as tamoxifen. Using quantitative RT-PCR, we, therefore, measured the levels of transcripts encoding these coregulators, as well as the corepressor SMRT, and the coactivator SRC-1, in a small cohort of tamoxifen-resistant and sensitive breast tumors. The results suggest that tumor sensitivity to mixed antagonists may be governed by a complex set of transcription factors, which we are only now beginning to understand.


The Journal of Steroid Biochemistry and Molecular Biology | 2000

Thoughts on tamoxifen resistant breast cancer. Are coregulators the answer or just a red herring

J.Dinny Graham; David L. Bain; Jennifer K. Richer; Twila A. Jackson; Lin Tung; Kathryn B. Horwitz

The antiestrogen tamoxifen is an effective treatment for estrogen receptor positive breast cancers, slowing tumor growth and preventing disease recurrence, with relatively few side effects. However, many patients who initially respond to treatment, later become resistant to treatment. Tamoxifen has both agonist and antagonist activities, which are manifested in a tissue-specific pattern. Development of tamoxifen resistance can be characterized by an increase in the partial agonist properties of the antiestrogen in the breast, resulting in loss of growth inhibition and even inappropriate tumor stimulation. Nuclear receptor function is modulated by transcriptional coregulators, which either enhance or repress receptor activity. Using a mixed antagonist-biased two-hybrid screening strategy, we identified two such proteins: the human homolog of the nuclear receptor corepressor, N-CoR, and a novel coactivator, L7/SPA (Switch Protein for Antagonists). In transcriptional studies N-CoR suppressed the agonist properties of tamoxifen and RU486, while L7/SPA increased agonist effects. We speculated that the relative level of these coactivators and corepressors might determine the balance of agonist and antagonist properties of mixed antagonists such as tamoxifen. Using quantitative RT-PCR we therefore measured the levels of transcripts encoding these coregulators, as well as the corepressor SMRT, and the coactivator SRC-1, in a small cohort of tamoxifen resistant and sensitive breast tumors. The results suggest that tumor sensitivity to mixed antagonists may be governed by a complex set of transcription factors, which we are only now beginning to understand.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Thermodynamic analysis of progesterone receptor–promoter interactions reveals a molecular model for isoform-specific function

Keith D. Connaghan-Jones; Aaron F. Heneghan; Michael T. Miura; David L. Bain

Human progesterone receptors (PR) exist as two functionally distinct isoforms, PR-A and PR-B. The proteins are identical except for an additional 164 residues located at the N terminus of PR-B. To determine the mechanisms responsible for isoform-specific functional differences, we present here a thermodynamic dissection of PR-A–promoter interactions and compare the results to our previous work on PR-B. This analysis has generated a number of results inconsistent with the traditional, biochemically based model of receptor function. Specifically, statistical models invoking preformed PR-A dimers as the active binding species demonstrate that intrinsic binding energetics are over an order of magnitude greater than is apparent. High-affinity binding is opposed, however, by a large energetic penalty. The consequences of this penalty are 2-fold: Successive monomer binding to a palindromic response element is thermodynamically favored over preformed dimer binding, and DNA-induced dimerization of the monomers is largely abolished. Furthermore, PR-A binding to multiple PREs is only weakly cooperative, as judged by a 5-fold increase in overall stability. Comparison of these results to our work on PR-B demonstrates that whereas both isoforms appear to have similar DNA binding affinities, PR-B in fact has a greatly increased intrinsic binding affinity and cooperative binding ability relative to PR-A. These differences thus suggest that residues unique to PR-B allosterically regulate the energetics of cooperative promoter assembly. From a functional perspective, the differences in microscopic affinities predict receptor–promoter occupancies that accurately correlate with the transcriptional activation profiles seen for each isoform.


Nature Protocols | 2008

Quantitative DNase footprint titration: a tool for analyzing the energetics of protein–DNA interactions

Keith D. Connaghan-Jones; Amie D. Moody; David L. Bain

A major goal in biomedical research is to determine the mechanisms responsible for gene regulation. However, the promoters and operators that control transcription are often complex in nature, containing multiple-binding sites with which DNA-binding proteins can interact cooperatively. Quantitative DNase footprint titration is one of the few techniques capable of resolving the microscopic binding affinities responsible for the macroscopic assembly process. Here, we present a step-by-step protocol for carrying out a footprint titration experiment. We then describe how to quantify the resultant images to generate individual-site binding curves. Finally, we derive basic equations for binding at each site and present an overview of the fitting process, applying it to the anticipated results. Users should anticipate that the footprinting experiment will take 3–5 d starting from DNA template isolation to image acquisition and quantitation.


Journal of Molecular Biology | 2012

Glucocorticoid Receptor-DNA Interactions: Binding Energetics Are the Primary Determinant of Sequence-Specific Transcriptional Activity

David L. Bain; Qin Yang; Keith D. Connaghan; James P. Robblee; Michael T. Miura; Gregory D. Degala; James R. Lambert; Nasib K. Maluf

The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A long-standing question has focused on how GR and other receptors precisely control gene expression. One difficulty in addressing this is that GR function is influenced by multiple factors including ligand and coactivator levels, chromatin state, and allosteric coupling. Moreover, the receptor recognizes an array of DNA sequences that generate a range of transcriptional activities. Such complexity suggests that any single parameter-DNA binding affinity, for example-is unlikely to be a dominant contributor to function. Indeed, a number of studies have suggested that for GR and other receptors, binding affinity toward different DNA sequences is poorly correlated with transcriptional activity. As a step toward determining the factors most predictive of GR function, we rigorously examined the relationship between in vitro GR-DNA binding energetics and in vivo transcriptional activity. We first demonstrate that previous approaches for assessing affinity-function relationships are problematic due to issues of data transformation and linearization. Thus, the conclusion that binding energetics and transcriptional activity are poorly correlated is premature. Using more appropriate analyses, we find that energetics and activity are in fact highly correlated. Furthermore, this correlation can be quantitatively accounted for using simple binding models. Finally, we show that the strong relationship between energetics and transcriptional activity is recapitulated in multiple promoter contexts, cell lines, and chromatin environments. Thus, despite the complexity of GR function, DNA binding energetics are the primary determinant of sequence-specific transcriptional activity.


Journal of Molecular Biology | 2008

Thermodynamic Dissection of Progesterone Receptor Interactions at the Mouse Mammary Tumor Virus Promoter: Monomer Binding and Strong Cooperativity Dominate the Assembly Reaction

Keith D. Connaghan-Jones; Aaron F. Heneghan; Michael T. Miura; David L. Bain

Progesterone receptors (PRs) play critical roles in eukaryotic gene regulation, yet the mechanisms by which they assemble at their promoters are poorly understood. One of the few promoters amenable to analysis is the mouse mammary tumor virus gene regulatory sequence. Embedded within this sequence are four progesterone response elements (PREs) corresponding to a palindromic PRE and three half-site PREs. Early mutational studies indicated that the presence of all four sites generated a synergistic and strong transcriptional response. However, DNA binding analyses suggested that receptor assembly at the promoter occurred in the absence of significant cooperativity. Taken together, the results indicated that cooperative interactions among PREs could not account for the observed functional synergy. More broadly, the studies raised the question of whether cooperativity was a common feature of PR-mediated gene regulation. As a step toward obtaining a quantitative and, thus, predictive understanding of receptor function, we have carried out a thermodynamic dissection of PR A-isoform interactions at the mouse mammary tumor virus promoter. Utilizing analytical ultracentrifugation and quantitative footprinting, we have resolved the microscopic energetics of PR A-isoform binding, including cooperativity terms. Our results reveal a model contrary to that inferred from previous biochemical investigations. Specifically, the binding unit at a half-site is not a receptor dimer but is instead a monomer; monomers bound at half-sites are capable of significant pairwise cooperative interactions; occupancy of all three half-sites is required to cooperatively engage the palindromic-bound dimer; and finally, large unfavorable forces accompany assembly. Overall, monomer binding accounts for the majority of the intrinsic binding energetics and cooperativity contributes an approximately 1000-fold increase in receptor-promoter stability. Finally, the partitioning of cooperativity suggests a framework for interpreting in vivo transcriptional synergy. These results highlight the insight available from rigorous analysis and demonstrate that receptor-promoter interactions are considerably more complex than typically envisioned.

Collaboration


Dive into the David L. Bain's collaboration.

Top Co-Authors

Avatar

Michael T. Miura

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Keith D. Connaghan

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Aaron F. Heneghan

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Yang

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar

Amie D. Moody

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Tung

Anschutz Medical Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge