Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Qiang Zheng is active.

Publication


Featured researches published by Ming-Qiang Zheng.


Molecular Psychiatry | 2013

Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study.

Alexander Neumeister; Marc D. Normandin; Robert H. Pietrzak; Daniele Piomelli; Ming-Qiang Zheng; Ana Gujarro-Anton; Marc N. Potenza; Christopher R. Bailey; Shu-fei Lin; Soheila Najafzadeh; Jim Ropchan; Shannan Henry; Stefani Corsi-Travali; Richard E. Carson; Yiyun Huang

Endocannabinoids and their attending cannabinoid type 1 (CB1) receptor have been implicated in animal models of post-traumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma-exposed controls (TC)) and those without such histories (healthy controls (HC)). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures the volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, palmitoylethanolamide and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, P=0.001; 19.5% and 14.5% higher, respectively), which were most pronounced in women (F(1,53)=5.52, P=0.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma

Jiangbing Zhou; Toral R. Patel; Rachael W. Sirianni; Garth W. Strohbehn; Ming-Qiang Zheng; Nha Duong; Thomas Schafbauer; Anita Huttner; Yiyun Huang; Richard E. Carson; Ying Zhang; David J. Sullivan; Joseph M. Piepmeier; W. Mark Saltzman

Current therapy for glioblastoma multiforme is insufficient, with nearly universal recurrence. Available drug therapies are unsuccessful because they fail to penetrate through the region of the brain containing tumor cells and they fail to kill the cells most responsible for tumor development and therapy resistance, brain cancer stem cells (BCSCs). To address these challenges, we combined two major advances in technology: (i) brain-penetrating polymeric nanoparticles that can be loaded with drugs and are optimized for intracranial convection-enhanced delivery and (ii) repurposed compounds, previously used in Food and Drug Administration-approved products, which were identified through library screening to target BCSCs. Using fluorescence imaging and positron emission tomography, we demonstrate that brain-penetrating nanoparticles can be delivered to large intracranial volumes in both rats and pigs. We identified several agents (from Food and Drug Administration-approved products) that potently inhibit proliferation and self-renewal of BCSCs. When loaded into brain-penetrating nanoparticles and administered by convection-enhanced delivery, one of these agents, dithiazanine iodide, significantly increased survival in rats bearing BCSC-derived xenografts. This unique approach to controlled delivery in the brain should have a significant impact on treatment of glioblastoma multiforme and suggests previously undescribed routes for drug and gene delivery to treat other diseases of the central nervous system.


The Journal of Nuclear Medicine | 2013

Synthesis and Evaluation of 11C-LY2795050 as a κ-Opioid Receptor Antagonist Radiotracer for PET Imaging

Ming-Qiang Zheng; Nabeel Nabulsi; Su Jin Kim; Giampaolo Tomasi; Shu-fei Lin; Charles H. Mitch; Steven J. Quimby; Vanessa N. Barth; Karen Rash; John Joseph Masters; Antonio Navarro; Eric P. Seest; Evan D. Morris; Richard E. Carson; Yiyun Huang

Kappa-opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse, and alcoholism. To date, only 1 tracer, the KOR agonist 11C-GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist 11C-LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo. Methods: The in vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabeled ligand in Sprague–Dawley rats and in wild-type and KOR knockout mice, to assess the ligand’s potential as a tracer candidate. Imaging experiments with 11C-LY2795050 in monkeys were performed on the Focus-220 scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis. Results: LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with liquid chromatography–tandem mass spectrometry identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. 11C-LY2795050 was prepared in an average yield of 12% and greater than 99% radiochemical purity. In rhesus monkeys, 11C-LY2795050 displayed a moderate rate of peripheral metabolism, with approximately 40% of parent compound remaining at 30 min after injection. In the brain, 11C-LY2795050 displayed fast uptake kinetics (regional activity peak times of <20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity. Further, specific binding of 11C-LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner. Conclusion: 11C-LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.


JAMA Psychiatry | 2014

Association of In Vivo κ-Opioid Receptor Availability and the Transdiagnostic Dimensional Expression of Trauma-Related Psychopathology

Robert H. Pietrzak; Mika Naganawa; Yiyun Huang; Stefani Corsi-Travali; Ming-Qiang Zheng; Murray B. Stein; Shannan Henry; Keunpoong Lim; Jim Ropchan; Shu-fei Lin; Richard E. Carson; Alexander Neumeister

IMPORTANCE Exposure to trauma increases the risk for developing threat (ie, fear) symptoms, such as reexperiencing and hyperarousal symptoms, and loss (ie, dysphoria) symptoms, such as emotional numbing and depressive symptoms. While preclinical data have implicated the activated dynorphin/κ-opioid receptor (KOR) system in relation to these symptoms, the role of the KOR system in mediating these phenotypes in humans is unknown. Elucidation of molecular targets implicated in threat and loss symptoms is important because it can help inform the development of novel, mechanism-based treatments for trauma-related psychopathology. OBJECTIVE To use the newly developed [11C]LY2795050 radiotracer and high-resolution positron emission tomography to evaluate the relation between in vivo KOR availability in an amygdala-anterior cingulate cortex-ventral striatal neural circuit and the severity of threat and loss symptoms. We additionally evaluated the role of 24-hour urinary cortisol levels in mediating this association. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional positron emission tomography study under resting conditions was conducted at an academic medical center. Thirty-five individuals representing a broad transdiagnostic and dimensional spectrum of trauma-related psychopathology, ranging from nontrauma-exposed psychiatrically healthy adults to trauma-exposed adults with severe trauma-related psychopathology (ie, posttraumatic stress disorder, major depressive disorder, and/or generalized anxiety disorder). MAIN OUTCOMES AND MEASURES [11C]LY2795050 volume of distribution values in amygdala-anterior cingulate cortex-ventral striatal neural circuit; composite measures of threat (ie, reexperiencing, avoidance, and hyperarousal symptoms) and loss (ie, emotional numbing, major depressive disorder, and generalized anxiety disorder symptoms) symptoms as assessed using the Clinician-Administered PTSD Scale, Hamilton Depression Rating Scale, and Hamilton Rating Scale for Anxiety; and 24-hour urinary cortisol levels. RESULTS [11C]LY2795050 volume of distribution values in an amygdala-anterior cingulate cortex-ventral striatal neural circuit were negatively associated with severity of loss (r = -0.39; 95% CI, -0.08 to -0.66), but not threat (r = -0.03; 95% CI, -0.30 to 0.27), symptoms; this association was most pronounced for dysphoria symptoms (r = -0.45; 95% CI, -0.10 to -0.70). Path analysis revealed that lower [11C]LY2795050 volume of distribution values in this circuit was directly associated with greater severity of loss symptoms and indirectly mediated by 24-hour urinary cortisol levels. CONCLUSIONS AND RELEVANCE Results of this study suggest that KOR availability in an amygdala-anterior cingulate cortex-ventral striatal neural circuit mediates the phenotypic expression of trauma-related loss (ie, dysphoria) symptoms. They further suggest that an activated corticotropin-releasing factor/hypothalamic-pituitary-adrenal axis system, as assessed by 24-hour urinary cortisol levels, may indirectly mediate this association. These results may help inform the development of more targeted, mechanism-based transdiagnostic treatments for loss (ie, dysphoric) symptoms.


The Journal of Nuclear Medicine | 2014

Phosphodiesterase 10A PET Radioligand Development Program: From Pig to Human

Christophe Plisson; David Weinzimmer; Steen Jakobsen; Sridhar Natesan; Cristian Salinas; Shu-fei Lin; David Labaree; Ming-Qiang Zheng; Nabeel Nabulsi; Tiago Reis Marques; Shitij Kapur; Eiji Kawanishi; Takeaki Saijo; Roger N. Gunn; Richard E. Carson; Eugenii A. Rabiner

Four novel phosphodiesterase 10A (PDE10A) PET tracers have been synthesized, characterized in preclinical studies, and compared with the previously reported 11C-MP-10. Methods: On the basis of in vitro data, IMA102, IMA104, IMA107, and IMA106 were identified as potential PDE10A radioligand candidates and labeled with either 11C via N-methylation or with 18F through an SN2 reaction, in the case of IMA102. These candidates were compared with 11C-MP-10 in pilot in vivo studies in the pig brain. On the basis of these data, 11C-IMA106 and 11C-IMA107 were taken into further evaluation and comparison with 11C-MP-10 in the primate brain. Finally, the most promising radioligand candidate was progressed into human evaluation. Results: All 5 tracers were produced with good radiochemical yield and specific activity. All candidates readily entered the brain and demonstrated a heterogeneous distribution consistent with the known expression of PDE10A. Baseline PET studies in the pig and baboon showed that 11C-IMA107 and 11C-MP-10 displayed the most favorable tissue kinetics and imaging properties. The administration of selective PDE10A inhibitors reduced the binding of 11C-IMA107 and 11C-MP-10 in the PDE10A-rich brain regions, in a dose-dependent manner. In the nonhuman primate brain, the tissue kinetics of 11C-IMA107 and 11C-MP-10 were well described by a 2-tissue-compartment model, allowing robust estimates of the regional total volume of distribution. Blockade with unlabeled MP-10 confirmed the suitability of the cerebellum as a reference tissue and enabled the estimation of regional binding potential as the outcome measure of specific binding. Conclusion: 11C-IMA107 was identified as the ligand with the highest binding potential while still possessing reversible kinetics. The first human administration of 11C-IMA107 has demonstrated the expected regional distribution and suitably fast kinetics, indicating that 11C-IMA107 will be a useful tool for the investigation of PDE10A status in the living human brain.


Current Topics in Medicinal Chemistry | 2010

Development of Effective PET and SPECT Imaging Agents for the Serotonin Transporter: Has a Twenty-Year Journey Reached its Destination?

Yiyun Huang; Ming-Qiang Zheng; John M. Gerdes

The serotonin transporter (SERT) has been implicated in a variety of neuropsychiatric disorders including depression, schizophrenia, substance abuse, alcoholism, and Alzheimers disease. Radiotracer-based in vivo imaging techniques such as Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT) are important tools to investigate the functions of SERT in the living brain under normal conditions and its dysfunction in diseases. In this report we review the development and validation of effective PET and SPECT radiotracers in the last twenty years. First, the requirements for an effective imaging tracer, and factors influencing a tracers in vivo imaging performance are discussed. PET and SPECT radiotracers for SERT are then categorized and reviewed according to their chemical scaffolds: 1) SSRIs and related compounds; 2) tropane-based ligands; 3) isoquinolines; and 4) substituted diarylsulfides. Critical evaluation and comments are provided for promising radiotracers, if any, emerging from each chemical scaffold. Based on experimental data gathered from radiotracer development for SERT, an examination of the relationship between an imaging tracers in vitro physicochemical and pharmacological properties and its in vivo performance parameters is provided. Finally, tracers available for imaging applications in humans are assessed and compared in terms of tissue binding kinetics, non-specific binding, and specific binding signals in vivo. From these assessments, we conclude that, after twenty years of development efforts, a number of effective PET and SPECT radiotracers have now been validated and are available for imaging SERT in humans. The applications of these efficacious SERT imaging agents will further advance our understanding of this important transporter in psychiatric and neurodegenerative disorders.


Neuropsychopharmacology | 2014

Cannabinoid Type 1 Receptor Availability in the Amygdala Mediates Threat Processing in Trauma Survivors

Robert H. Pietrzak; Yiyun Huang; Stefani Corsi-Travali; Ming-Qiang Zheng; Shu-fei Lin; Shannan Henry; Marc N. Potenza; Daniele Piomelli; Richard E. Carson; Alexander Neumeister

Attentional bias to threat is a key endophenotype that contributes to the chronicity of trauma-related psychopathology. However, little is known about the neurobiology of this endophenotype and no known in vivo molecular imaging study has been conducted to evaluate candidate receptor systems that may be implicated in this endophenotype or the phenotypic expression of trauma-related psychopathology that comprises threat (ie, re-experiencing, avoidance, and hyperarousal) and loss (ie, emotional numbing, depression/dysphoria, generalized anxiety) symptomatology. Using the radioligand [11C]OMAR and positron emission tomography (PET), we evaluated the relationship between in vivo cannabinoid receptor type 1 (CB1) receptor availability in the amygdala, and performance on a dot-probe measure of attentional bias to threat, and clinician interview-based measures of trauma-related psychopathology. The sample comprised adults presenting with a broad spectrum of trauma-related psychopathology, ranging from nontrauma-exposed, psychiatrically healthy adults to trauma-exposed adults with severe trauma-related psychopathology. Results revealed that increased CB1 receptor availability in the amygdala was associated with increased attentional bias to threat, as well as increased severity of threat, but not loss, symptomatology; greater peripheral anandamide levels were associated with decreased attentional bias to threat. A mediation analysis further suggested that attentional bias to threat mediated the relationship between CB1 receptor availability in the amygdala and severity of threat symptomatology. These data substantiate a key role for compromised endocannabinoid function in mediating both the endophenotypic and phenotypic expression of threat symptomatology in humans. They further suggest that novel pharmacotherapies that target the CB1 system may provide a more focused, mechanism-based approach to mitigating this core aspect of trauma-related psychopathology.


Bioconjugate Chemistry | 2014

Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography.

Rachael W. Sirianni; Ming-Qiang Zheng; Toral R. Patel; Thomas Shafbauer; Jiangbing Zhou; W. Mark Saltzman; Richard E. Carson; Yiyun Huang

The avidin–biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain.


Journal of Cerebral Blood Flow and Metabolism | 2015

Imaging the Cannabinoid CB1 Receptor in Humans with [11C] OMAR: Assessment of Kinetic Analysis Methods, Test–Retest Reproducibility, and Gender Differences

Marc D. Normandin; Ming-Qiang Zheng; Kuo-Shyan Lin; N. Scott Mason; Shu-fei Lin; Jim Ropchan; David Labaree; Shannan Henry; Wendol Williams; Richard E. Carson; Alexander Neumeister; Yiyun Huang

The Radiotracer [11C]OMAR was developed for positron emission tomography (PET) imaging of cannabinoid type-1 receptors (CB1R). The objectives of the present study were to evaluate kinetic analysis methods, determine test–retest reliability, and assess gender differences in receptor availability. Dynamic PET data were acquired in 10 human subjects, and analyzed with one-tissue (1T) and two-tissue (2T) compartment models and by the Logan and multilinear analysis (MA1) methods to estimate regional volume of distribution (VT). The 2T model inclusive of a vascular component (2TV) and MA1 were the preferred techniques. Test–retest reliability of VT was good (mean absolute deviation ~ 9%; intraclass correlation coefficient ~ 0.7). Tracer parent fraction in plasma was lower in women (P < 0.0001). Cerebral uptake normalized by body weight and injected dose was higher in men by 17% (P < 0.0001), but VT was significantly greater in women by 23% (P < 0.0001). These findings show that [11C]OMAR binding can be reliably quantified by the 2T model or MA1 method and demonstrate the utility of this tracer for in vivo imaging of CB1R. In addition, results from the present study indicate that gender difference in receptor binding should be taken into consideration when [11C]OMAR is used to quantify CB1R availability in neuropsychiatric disorders.


Neuropsychopharmacology | 2014

Imaging Nicotine- and Amphetamine-Induced Dopamine Release in Rhesus Monkeys with [ 11 C]PHNO vs [ 11 C]raclopride PET

Jean-Dominique Gallezot; Tracy Kloczynski; David Weinzimmer; David Labaree; Ming-Qiang Zheng; Keunpoong Lim; Eugenii A. Rabiner; Khanum Ridler; Brian Pittman; Yiyun Huang; Richard E. Carson; Evan D. Morris; Kelly P. Cosgrove

The radiotracer [11C]PHNO may have advantages over other dopamine (DA) D2/D3 receptor ligands because, as an agonist, it measures high-affinity, functionally active D2/D3 receptors, whereas the traditionally used radiotracer [11C]raclopride measures both high- and low-affinity receptors. Our aim was to take advantage of the strength of [11C]PHNO for measuring the small DA signal induced by nicotine, which has been difficult to measure in preclinical and clinical neuroimaging studies. Nicotine- and amphetamine-induced DA release in non-human primates was measured with [11C]PHNO and [11C]raclopride positron emission tomography (PET) imaging. Seven adult rhesus monkeys were imaged on a FOCUS 220 PET scanner after injection of a bolus of [11C]PHNO or [11C]raclopride in three conditions: baseline; preinjection of nicotine (0.1 mg/kg bolus+0.08 mg/kg infusion over 30 min); preinjection of amphetamine (0.4 mg/kg, 5 min before radiotracer injection). DA release was measured as change in binding potential (BPND). Nicotine significantly decreased BPND in the caudate (7±8%), the nucleus accumbens (10±7%), and in the globus pallidus (13±15%) measured with [11C]PHNO, but did not significantly decrease BPND in the putamen or the substantia nigra or in any region when measured with [11C]raclopride. Amphetamine significantly reduced BPND in all regions with both radiotracers. In the striatum, larger amphetamine-induced changes were detected with [11C]PHNO compared with [11C]raclopride (52–64% vs 33–35%, respectively). We confirmed that [11C]PHNO is more sensitive than [11C]raclopride to nicotine- and amphetamine-induced DA release. [11C]PHNO PET may be more sensitive to measuring tobacco smoking-induced DA release in human tobacco smokers.

Collaboration


Dive into the Ming-Qiang Zheng's collaboration.

Top Co-Authors

Avatar

Yiyun Huang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Carson

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge