Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David McCleary.
Oncotarget | 2015
Peter Hamilton; Yinhai Wang; Clinton Boyd; Jacqueline James; Maurice B. Loughrey; Joseph P. Hougton; David P. Boyle; Paul J. Kelly; Perry Maxwell; David McCleary; James Diamond; Darragh G. McArt; Jonathon Tunstall; Peter Bankhead; Manuel Salto-Tellez
The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.
Cellular Oncology | 2010
Yinhai Wang; David McCleary; Ching-Wei Wang; Paul J. Kelly; Jacqueline James; Dean A. Fennell; Peter Hamilton
Background: Tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform. Methods: A High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity. Results: The automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously. Conclusion: The methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.
Scopus | 2010
Yu-li Wang; Dean A. Fennell; Peter Hamilton; Jacqueline James; David McCleary; C-W Wang; Paul J. Kelly
Background: Tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform. Methods: A High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity. Results: The automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously. Conclusion: The methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.
PubMed | 2010
Yu-li Wang; David McCleary; Ching-Wei Wang; Paul F. Kelly; Jacqueline James; Dean A. Fennell; Peter Hamilton
Background: Tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform. Methods: A High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity. Results: The automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously. Conclusion: The methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.
Archive | 2016
Jonathon Tunstall; Peter Hamilton; Yinhai Wang; David McCleary; James Diamond
Archive | 2016
Jonathon Tunstall; Peter Hamilton; Yinhai Wang; David McCleary; James Diamond
Virchows Archiv | 2014
Peter Hamilton; Yanmei Wang; David McCleary; James Diamond; E. Regan; N. Montgomery; Jonathon Tunstall; David L. Boyle; Maurice B. Loughrey; Manuel Salto-Tellez
Cellular Oncology | 2010
Yinhai Wang; David McCleary; Peter Hamilton
Cellular Oncology | 2010
Yinhai Wang; R. Xavier; David McCleary; Peter Hamilton
Cellular Oncology | 2008
David McCleary; James Diamond; Heike Grabsch; Danny Crookes; Peter Hamilton