Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Salto-Tellez is active.

Publication


Featured researches published by Manuel Salto-Tellez.


Stem Cell Research | 2010

Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.

Ruenn Chai Lai; Fatih Arslan; May May Lee; Newman Siu Kwan Sze; Tian Sheng Chen; Manuel Salto-Tellez; Leo Timmers; Chuen Neng Lee; Reida Menshawe El Oakley; Gerard Pasterkamp; Dominique P.V. de Kleijn; Sai Kiang Lim

Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50-100 nm. Here we show that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and were shown to be phospholipid vesicles consisting of cholesterol, sphingomyelin, and phosphatidylcholine. They contained coimmunoprecipitating exosome-associated proteins, e.g., CD81, CD9, and Alix. These particles were purified as a homogeneous population of particles with a hydrodynamic radius of 55-65 nm by size-exclusion fractionation on a HPLC. Together these observations indicated that these particles are exosomes. These purified exosomes reduced infarct size in a mouse model of myocardial ischemia/reperfusion injury. Therefore, MSC mediated its cardioprotective paracrine effect by secreting exosomes. This novel role of exosomes highlights a new perspective into intercellular mediation of tissue injury and repair, and engenders novel approaches to the development of biologics for tissue repair.


The FASEB Journal | 2005

Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse

Ling Li; Madhav Bhatia; Yi Zhun Zhu; Yi Chun Zhu; Raina Devi Ramnath; Zhong Jing Wang; Farhana Anuar; Matthew Whiteman; Manuel Salto-Tellez; Philip K. Moore

Hydrogen sulfide (H2S) is synthesized in the body from l‐cysteine by several enzymes including cystathionine‐γ‐lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin‐induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)‐ and time (6 and 24 h)‐dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 ± 0.7 µM to 40.9 ± 0.6 µM (n=6, P<0.05) while H2S formation from added l‐cysteine was increased in both liver and kidney. CSE gene expression was also increased in both liver (94.2±2.7%, n=6, P<0.05) and kidney (77.5±3.2%, n=6, P<0.05). LPS injection also elevated lung (148.2±2.6%, n=6, P<0.05) and kidney (78.8±8.2%, n=6, P<0.05) myeloperoxidase (MPO, a marker of tissue neutrophil infiltration) activity alongside histological evidence of lung, liver, and kidney tissue inflammatory damage. Plasma nitrate/nitrite (NOx) concentration was additionally elevated in a time‐ and dose‐dependent manner in LPS‐injected animals. To examine directly the possible proinflammatory effect of H2S, mice were administered sodium hydrosulfide (H2S donor drug, 14 µmol/kg ip) that resulted in marked histological signs of lung inflammation, increased lung and liver MPO activity, and raised plasma TNF‐α concentration (4.6±1.4 ng/ml, n=6). In contrast, dl‐propargylglycine (CSE inhibitor, 50 mg/kg ip), exhibited marked anti‐inflammatory activity as evidenced by reduced lung and liver MPO activity, and ameliorated lung and liver tissue damage. In separate experiments, we also detected significantly higher (150.5±43.7 µM c.f. 43.8±5.1 µM, n=5, P<0.05) plasma H2S levels in humans with septic shock. These findings suggest that H2S exhibits proinflammatory activity in endotoxic shock and suggest a new approach to the development of novel drugs for this condition.


Stem Cells | 2007

Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs.

Qizhou Lian; Elias Lye; Keng Suan Yeo; Eileen Khia Way Tan; Manuel Salto-Tellez; Tong Ming Liu; Nallasivam Palanisamy; Reida Menshawe El Oakley; Eng Hin Lee; Bing Lim; Sai Kiang Lim

Adult tissue‐derived mesenchymal stem cells (MSCs) have demonstrated therapeutic efficacy in treating diseases or repairing damaged tissues through mechanisms thought to be mediated by either cell replacement or secretion of paracrine factors. Characterized, self‐renewing human ESCs could potentially be an invariable source of consistently uniform MSCs for therapeutic applications. Here we describe a clinically relevant and reproducible manner of generating identical batches of hESC‐derived MSC (hESC‐MSC) cultures that circumvents exposure to virus, mouse cells, or serum. Trypsinization and propagation of HuES9 or H1 hESCs in feeder‐ and serum‐free selection media generated three polyclonal, karyotypically stable, and phenotypically MSC‐like cultures that do not express pluripotency‐associated markers but displayed MSC‐like surface antigens and gene expression profile. They differentiate into adipocytes, osteocytes, and chondrocytes in vitro. Gene expression and fluorescence‐activated cell sorter analysis identified CD105 and CD24 as highly expressed antigens on hESC‐MSCs and hESCs, respectively. CD105+, CD24− monoclonal isolates have a typical MSC gene expression profiles and were identical to each other with a highly correlated gene expression profile (r2 > .90). We have developed a protocol to reproducibly generate clinically compliant and identical hESC‐MSC cultures.


Cancer Research | 2005

RUNX3, A Novel Tumor Suppressor, Is Frequently Inactivated in Gastric Cancer by Protein Mislocalization

Kosei Ito; Qiang Liu; Manuel Salto-Tellez; Takashi Yano; Kotaro Tada; Hiroshi Ida; Canhua Huang; Nilesh Shah; Masafumi Inoue; Andrea Rajnakova; Kum Chew Hiong; Bee Keow Peh; Hwan Chour Han; Tomoko Ito; Ming Teh; Khay Guan Yeoh; Yoshiaki Ito

Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-β is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.


Free Radical Biology and Medicine | 2009

GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat

Ling Li; Manuel Salto-Tellez; Choon-Hong Tan; Matthew Whiteman; Philip K. Moore

GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) is a slow-releasing hydrogen sulfide (H(2)S) donor. Administration of GYY4137 (50 mg/kg, iv) to anesthetized rats 10 min after lipopolysaccharide (LPS; 4 mg/kg, iv) decreased the slowly developing hypotension. GYY4137 inhibited LPS-induced TNF-alpha production in rat blood and reduced the LPS-evoked rise in NF-kappaB activation, inducible nitric oxide synthase/cyclooxygenase-2 expression, and generation of PGE(2) and nitrate/nitrite in RAW 264.7 macrophages. GYY4137 (50 mg/kg, ip) administered to conscious rats 1 or 2 h after (but not 1 h before) LPS decreased the subsequent (4 h) rise in plasma proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6), nitrite/nitrate, C-reactive protein, and L-selectin. GYY4137 administration also decreased the LPS-evoked increase in lung myeloperoxidase activity, increased plasma concentration of the anti-inflammatory cytokine IL-10, and decreased tissue damage as determined histologically and by measurement of plasma creatinine and alanine aminotransferase activity. Time-expired GYY4137 (50 mg/kg, ip) did not affect the LPS-induced rise in plasma TNF-alpha or lung myeloperoxidase activity. GYY4137 also decreased the LPS-mediated upregulation of liver transcription factors (NF-kappaB and STAT-3). These results suggest an anti-inflammatory effect of GYY4137. The possibility that GYY4137 and other slow-releasing H(2)S donors exert anti-inflammatory activity in other models of inflammation and in humans warrants further study.


Nature Genetics | 2006

Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2)

Eranga N. Vithana; Periasamy Sundaresan; Neil D. Ebenezer; Donald Tan; Moin Mohamed; Seema Anand; Khin O Khine; Divya Venkataraman; Victor H.K. Yong; Manuel Salto-Tellez; Anandalakshmi Venkatraman; Ke Guo; Muthiah Srinivasan; Venkatesh N Prajna; Myint Khine; Joseph R. Casey; Chris F. Inglehearn; Tin Aung

Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.


Modern Pathology | 2003

Reliability of Tissue Microarrays in Detecting Protein Expression and Gene Amplification in Breast Cancer

Daohai Zhang; Manuel Salto-Tellez; Thomas Choudary Putti; Elaine Do; Evelyn Siew-Chuan Koay

Tissue microarrays allow high throughput molecular profiling of diagnostic or predictive markers in cancer specimens and rapid validation of novel potential candidates identified from genomic and proteomic analyses in a large number of tumor samples. To validate the use of tissue microarray technology for all the main biomarkers routinely used to decide breast cancer prognostication and postsurgical adjuvant therapy, we constructed a tissue microarray from 97 breast tumors, with a single 0.6 mm core per specimen. Immunostaining of tissue microarray sections and conventional full sections of each tumor were performed using well-characterized prognostic markers (estrogen receptor ER, progesterone receptor PR and c-erbB2). The full section versus tissue microarray concordance for these stains was 97% for ER, 98% for PR, and 97% for c-erbB2, respectively, with a strong statistical association (kappa value more than 0.90). Fluorescence in situ hybridization analysis for HER-2/neu gene amplification from the single-core tissue microarray was technically successful in about 90% (87/97) of the cases, with a concordance of 95% compared with parallel analyses with the full sections. The correlation with other pathological parameters was not significantly different between full-section and array-based results. It is concluded that the constructed tissue microarray with a single core per specimen ensures full biological representativeness to identify the associations between biomarkers and clinicopathological parameters, with no significant associated sampling bias.


Cancer Cell | 2008

RUNX3 Attenuates β-Catenin/T Cell Factors in Intestinal Tumorigenesis

Kosei Ito; Anthony Chee-Beng Lim; Manuel Salto-Tellez; Lena Motoda; Motomi Osato; Linda Shyue Huey Chuang; Cecilia Wei Lin Lee; Dominic Chih-Cheng Voon; Jason Kin Wai Koo; Huajing Wang; Hiroshi Fukamachi; Yoshiaki Ito

In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/TCF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.


Cancer Research | 2006

RUNX3 Is Frequently Inactivated by Dual Mechanisms of Protein Mislocalization and Promoter Hypermethylation in Breast Cancer

Quek Choon Lau; Erna Raja; Manuel Salto-Tellez; Qiang Liu; Kosei Ito; Masafumi Inoue; Thomas Choudary Putti; Marie Loh; Tun Kiat Ko; Canhua Huang; Kapil N. Bhalla; Tao Zhu; Yoshiaki Ito; Saraswati Sukumar

A tumor suppressor function has been attributed to RUNX3, a member of the RUNX family of transcription factors. Here, we examined alterations in the expression of three members, RUNX1, RUNX2, and RUNX3, and their interacting partner, CBF-beta, in breast cancer. Among them, RUNX3 was consistently underexpressed in breast cancer cell lines and primary tumors. Fifty percent of the breast cancer cell lines (n = 19) showed hypermethylation at the promoter region and displayed significantly lower levels of RUNX3 mRNA expression (P < 0.0001) and protein (P < 0.001). In primary Singaporean breast cancers, 9 of 44 specimens showed undetectable levels of RUNX3 by immunohistochemistry. In 35 of 44 tumors, however, low levels of RUNX3 protein were present. Remarkably, in each case, protein was mislocalized to the cytoplasm. In primary tumors, hypermethylation of RUNX3 was observed in 23 of 44 cases (52%) and was undetectable in matched adjacent normal breast epithelium. Mislocalization of the protein, with or without methylation, seems to account for RUNX3 inactivation in the vast majority of the tumors. In in vitro and in vivo assays, RUNX3 behaved as a growth suppressor in breast cancer cells. Stable expression of RUNX3 in MDA-MB-231 breast cancer cells led to a more cuboidal phenotype, significantly reduced invasiveness in Matrigel invasion assays, and suppressed tumor formation in immunodeficient mice. This study provides biological and mechanistic insights into RUNX3 as the key member of the family that plays a role in breast cancer. Frequent protein mislocalization and methylation could render RUNX3 a valuable marker for early detection and risk assessment.


European Journal of Cancer | 2010

MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer

Kin Wai Lai; King Xin Koh; Marie Loh; Kotaro Tada; Manish Mani Subramaniam; Xn Yii Lim; Aparna Vaithilingam; Manuel Salto-Tellez; Barry Iacopetta; Yoshiaki Ito; Richie Soong

AIM Accumulating evidence indicates that RUNX3 is an important tumour suppressor that is inactivated in many cancer types. This study aimed to assess the role of microRNA (miRNA) in the regulation of RUNX3. METHODS Four bioinformatic algorithms were used to predict miRNA binding to RUNX3. The correlation between candidate miRNAs and RUNX3 expression in cell lines was determined by real-time reverse transcriptase quantitative PCR (RT-qPCR) and Western blot. Candidate miRNAs were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability, apoptosis and Bim expression. miRNA and RUNX3 expression, RUNX3 methylation and RUNX3 protein levels were assessed in gastric tissue by RT-qPCR, Methylight analysis and immunohistochemistry, respectively. RESULTS Bioinformatics, gene and protein expression analysis in eight gastric cell lines identified miR-130b as the top candidate miRNA for RUNX3 binding. Overexpression of miR-130b increased cell viability, reduced cell death and decreased expression of Bim in TGF-beta mediated apoptosis, subsequent to the downregulation of RUNX3 protein expression. In 15 gastric tumours, miR-130b expression was significantly higher compared to matched normal tissue, and was inversely associated with RUNX3 hypermethylation. CONCLUSION Attenuation of RUNX3 protein levels by miRNA may reduce the growth suppressive potential of RUNX3 and contribute to tumourigenesis.

Collaboration


Dive into the Manuel Salto-Tellez's collaboration.

Top Co-Authors

Avatar

Jacqueline James

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Darragh G. McArt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Peter Hamilton

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Richie Soong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Philip D. Dunne

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Chee Wee Ong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khay Guan Yeoh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Perry Maxwell

Belfast Health and Social Care Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge