Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christa D. Peters-Lidard is active.

Publication


Featured researches published by Christa D. Peters-Lidard.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


Environmental Modelling and Software | 2006

Land information system: An interoperable framework for high resolution land surface modeling

Sujay V. Kumar; Christa D. Peters-Lidard; Yudong Tian; Paul R. Houser; James V. Geiger; S. Olden; L. Lighty; Joseph L. Eastman; B. Doty; Paul A. Dirmeyer

Abstract Knowledge of land surface water, energy, and carbon conditions are of critical importance due to their impact on many real world applications such as agricultural production, water resource management, and flood, weather, and climate prediction. Land Information System (LIS) is a software framework that integrates the use of satellite and ground-based observational data along with advanced land surface models and computing tools to accurately characterize land surface states and fluxes. LIS employs the use of scalable, high performance computing and data management technologies to deal with the computational challenges of high resolution land surface modeling. To make the LIS products transparently available to the end users, LIS includes a number of highly interactive visualization components as well. The LIS components are designed using object-oriented principles, with flexible, adaptable interfaces and modular structures for rapid prototyping and development. In addition, the interoperable features in LIS enable the definition, intercomparison, and validation of land surface modeling standards and the reuse of a high quality land surface modeling and computing system.


Canadian Journal of Remote Sensing | 2004

Estimating soil moisture at the watershed scale with satellite-based radar and land surface models

M. Susan Moran; Christa D. Peters-Lidard; Joseph M. Watts; Stephen McElroy

Spatially distributed soil moisture profiles are required for watershed applications such as drought and flood prediction, crop irrigation scheduling, pest management, and determining mobility with lightweight vehicles. Satellite-based soil moisture can be obtained from passive microwave, active microwave, and optical sensors, although the coarse spatial resolution of passive microwave and the inability to obtain vertically resolved information from optical sensors limit their usefulness for watershed-scale applications. Active microwave sensors such as synthetic aperture radar (SAR) currently represent the best approach for obtaining spatially distributed surface soil moisture at scales of 10–100 m for watersheds ranging from 1 000 to 25 000 km2. Although SAR provides surface soil moisture, the applications listed above require vertically resolved soil moisture profiles. To obtain distributed soil moisture profiles, a combined approach of calibration and data assimilation in soil vegetation atmosphere transfer (SVAT) models based on recent advances in soil physics is the most promising avenue of research. This review summarizes the state of the science using current satellite-based sensors to determine watershed-scale surface soil moisture distribution and the state of combining SVAT models with data assimilation and calibration approaches for the estimation of profile soil moisture. The basic conclusion of this review is that currently orbiting SAR sensors combined with available SVAT models could provide distributed profile soil moisture information with known accuracy at the watershed scale. The priority areas for future research should include image-based approaches for mapping surface roughness, determination of soil moisture in densely vegetated sites, active and passive microwave data fusion, and joint calibration and data assimilation approaches for a combined remote sensing – modeling system. For validation, a worldwide in situ soil moisture monitoring program should be implemented. Finally, to realize the full potential of satellite-based soil moisture estimation for watershed applications, it will be necessary to continue sensor development, improve image availability and timely delivery, and reduce image cost.


Journal of Hydrometeorology | 2007

Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications

Yudong Tian; Christa D. Peters-Lidard; Bhaskar J. Choudhury; Matthew Garcia

Abstract In this study, the recent work of Gottschalck et al. and Ebert et al. is extended by assessing the suitability of two Tropical Rainfall Measuring Mission (TRMM)-based precipitation products for hydrological land data assimilation applications. The two products are NASA’s gauge-corrected TRMM 3B42 Version 6 (3B42), and the satellite-only NOAA Climate Prediction Center (CPC) morphing technique (CMORPH). The two products were evaluated against ground-based rain gauge–only and gauge-corrected Doppler radar measurements. The analyses were performed at multiple time scales, ranging from annual to diurnal, for the period March 2003 through February 2006. The analyses show that at annual or seasonal time scales, TRMM 3B42 has much lower biases and RMS errors than CMORPH. CMORPH shows season-dependent biases, with overestimation in summer and underestimation in winter. This leads to 50% higher RMS errors in CMORPH’s area-averaged daily precipitation than TRMM 3B42. At shorter time scales (5 days or less),...


Journal of Hydrometeorology | 2009

A Modeling and Observational Framework for Diagnosing Local Land–Atmosphere Coupling on Diurnal Time Scales

Joseph A. Santanello; Christa D. Peters-Lidard; Sujay V. Kumar; Charles Alonge; Wei-Kuo Tao

Abstract Land–atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed because of the complex interactions and feedbacks present across a range of scales. Furthermore, uncoupled systems or experiments [e.g., the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS)] may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land–atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting Model (WRF) has been c...


Journal of Hydrometeorology | 2011

Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

Joseph A. Santanello; Christa D. Peters-Lidard; Sujay V. Kumar

AbstractThe inherent coupled nature of earth’s energy and water cycles places significant importance on the proper representation and diagnosis of land–atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture–precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA’s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) me...


Journal of Geophysical Research | 1999

An evaluation of NEXRAD precipitation estimates in complex terrain

C. Bryan Young; Brian R. Nelson; A. Allen Bradley; James A. Smith; Christa D. Peters-Lidard; Anton Kruger; Mary Lynn Baeck

Next Generation Weather Radar (NEXRAD) precipitation estimates are used for hydrological, meteorological, and climatological studies at a wide range of spatial and temporal scales. The utility of radar-based precipitation estimates in such applications hinges on an understanding of the sources and magnitude of estimation error. This study examines precipitation estimation in the complex mountainous terrain of the northern Appalachian Mountains. Hourly digital precipitation (HDP) products for two WSR-88D radars in New York state are evaluated for a 2-year period. This analysis includes evaluation of range dependence and spatial distribution of estimates, radar intercomparisons for the overlap region, and radar-gage comparisons. The results indicate that there are unique challenges for radar-rainfall estimation in mountainous terrain. Beam blockage is a serious problem that is not corrected by existing NEXRAD algorithms. Underestimation and nondetection of precipitation are also significant concerns. Improved algorithms are needed for merging estimates from multiple radars with spatially variable biases.


Journal of Hydrometeorology | 2009

Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

Sujay V. Kumar; Rolf H. Reichle; Randal D. Koster; Wade T. Crow; Christa D. Peters-Lidard

Abstract Root-zone soil moisture controls the land–atmosphere exchange of water and energy, and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments, synthetic surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root-zone information is h...


Bulletin of the American Meteorological Society | 2009

A Multiscale Modeling System: Developments, Applications, and Critical Issues

Wei-Kuo Tao; Jiun-Dar Chern; Robert Atlas; David A. Randall; Marat Khairoutdinov; Jui-Lin Li; Duane E. Waliser; Arthur Y. Hou; Xin Lin; Christa D. Peters-Lidard; William K. M. Lau; Jonathan H. Jiang; Joanne Simpson

A multiscale modeling framework (MMF), which replaces the conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM, constitutes a new and promising approach for climate modeling. The MMF can provide for global coverage and two-way interactions between the CRMs and their parent GCM. The CRM allows for explicit simulation of cloud processes and their interactions with radiation and surface processes, and the GCM allows for global coverage. A new MMF has been developed that is based on the NASA Goddard Space Flight Center (GSFC) finite-volume GCM (fvGCM) and the Goddard Cumulus Ensemble (GCE) model. This Goddard MMF produces many features that are similar to another MMF that was developed at Colorado State University (CSU), such as an improved surface precipitation pattern, better cloudiness, improved diurnal variability over both oceans and continents, and a stronger propagating Madden-Julian oscillation (MJO) compared to their parent GCMs using traditional cloud ...


Environmental Modelling and Software | 2008

An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF

Sujay V. Kumar; Christa D. Peters-Lidard; Joseph L. Eastman; Wei-Kuo Tao

Interactions between the atmosphere and the land surface have considerable influences on weather and climate. Coupled land-atmosphere systems that can realistically represent these interactions are thus critical for improving our understanding of the atmosphere-biosphere exchanges of energy, water, and their associated feedbacks. NASAs Land Information System (LIS) is a high-resolution land data assimilation system that integrates advanced land surface models, high-resolution satellite and observational data, data assimilation techniques, and high performance computing tools. LIS has been coupled to the Weather Research and Forecasting (WRF) model, enabling a high-resolution land-atmosphere modeling system. Synthetic simulations using the coupled LIS-WRF system demonstrates the interoperable use of land surface models, high-resolution land surface data and other land surface modeling tools through LIS. Real case study simulations for a June 2002 International H2O Project (IHOP) day is conducted by executing LIS first in an uncoupled manner to generate high-resolution soil moisture and soil temperature initial conditions. During the case study period, the land surface (LIS) and the atmospheric (WRF) models are executed in a coupled manner using the LIS-WRF system. The results from the simulations illustrate the impact of accurate, high-resolution land surface conditions on improving the prediction of clouds and precipitation. Thus, the coupled LIS-WRF system provides a testbed to enable studies in improving our understanding and predictability of regional and global water and energy cycles.

Collaboration


Dive into the Christa D. Peters-Lidard's collaboration.

Top Co-Authors

Avatar

Sujay V. Kumar

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David Mocko

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Kuo Tao

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Lang

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Yudong Tian

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf H. Reichle

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Michael B. Ek

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge