David P. Hesson
Integra Telecom
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David P. Hesson.
The International Journal of Biochemistry & Cell Biology | 2011
Lynne Murray; Qingsheng Chen; Michael S. Kramer; David P. Hesson; Rochelle L. Argentieri; Xueyang Peng; Mridu Gulati; Robert J. Homer; Thomas Russell; Nico van Rooijen; Jack A. Elias; Cory M. Hogaboam; Erica L. Herzog
The pleiotropic growth factor TGFβ(1) promotes many of the pathogenic mechanisms observed in lung fibrosis and airway remodeling, such as aberrant extracellular matrix deposition due to both fibroblast activation and fibroblast to myofibroblast differentiation. Serum amyloid P (SAP), a member of the pentraxin family of proteins inhibits bleomycin-induced lung fibrosis through an inhibition of pulmonary fibrocyte and pro-fibrotic alternative (M2) macrophage accumulation. It is unknown if SAP has effects downstream of TGFβ(1), a major mediator of pulmonary fibrosis. Using the lung specific TGFβ(1) transgenic mouse model, we determined that SAP inhibits all of the pathologies driven by TGFβ(1) including apoptosis, airway inflammation, pulmonary fibrocyte accumulation and collagen deposition, without affecting levels of TGFβ(1). To explore the role of monocyte derived cells in this model we used liposomal clodronate to deplete pulmonary macrophages. This led to pronounced anti-fibrotic effects that were independent of fibrocyte accumulation. Administration of SAP mirrored these effects and reduced both pulmonary M2 macrophages and increased chemokine IP10/CXCL10 expression in a SMAD 3-independent manner. Interestingly, SAP concentrations were reduced in the circulation of IPF patients and correlated with disease severity. Last, SAP directly inhibited M2 macrophage differentiation of monocytes obtained from these patients. These data suggest that the beneficial anti-fibrotic effects of SAP in TGFβ(1)-induced lung disease are via modulating monocyte responses.
PLOS ONE | 2010
Lynne Murray; Rogério Silva Rosada; Ana Paula Moreira; Amrita Joshi; Michael S. Kramer; David P. Hesson; Rochelle L. Argentieri; Susan K. Mathai; Mridu Gulati; Erica L. Herzog; Cory M. Hogaboam
Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses.
Fibrogenesis & Tissue Repair | 2010
Lynne Murray; Michael Kramer; David P. Hesson; Brynmor A. Watkins; Edward G. Fey; Rochelle L. Argentieri; Furquan Shaheen; Darryl A. Knight; Stephen T. Sonis
PurposeTo evaluate the effect of the anti-fibrotic protein serum amyloid P (SAP) on radiation-induced oral mucositis (OM) and fibrosis in a hamster cheek-pouch model.Experimental DesignHamsters received a single dose of radiation (40 Gy) to the left everted cheek pouch to induce significant OM. The protective therapeutic potential of SAP was evaluated using varying dosing regimens. The extent of OM was measured using a validated six-point scoring scheme ranging from 0 (normal tissue, no mucositis) to 5 (complete ulceration). Fibrotic remodeling was also visualized histologically and quantified at later time points using collagen gene expression.ResultsSAP treatment attenuated the profile of radiation-induced oral mucositis by delaying the time of onset, reducing the peak value, and enhancing the resolution of injury. The peak mucositis score was reduced by approximately 0.5 grade in SAP-treated animals. The number of animal days with a score of ≥ 3 was reduced by 48% in the SAP-treated group, compared with the saline control group (P < 0.01). SAP also inhibited the extent of tissue remodeling and decreased radiation-induced increases in myofibroblast number. Attenuated collagen deposition and gene expression was also observed in the cheek pouches of hamsters treated with SAP at both 16 and 28 days post-radiation.ConclusionsSAP treatment significantly attenuated radiation-induced injury. In particular, SAP attenuated the severity of OM and inhibited pathogenic remodeling. This suggests that SAP may be a useful therapy for the palliation of side effects observed during treatment for head and neck cancer.
Archive | 2003
James C. Barnitz; David P. Hesson; Glenn D. Frazer; Timothy J. Pelura
Archive | 2002
David P. Hesson; Glenn D. Frazer; Douglas Ross
Archive | 2001
David P. Hesson; Glenn D. Frazer; Timothy J. Pelura
Archive | 2008
David P. Hesson; Michael Kramer
Archive | 2002
David P. Hesson; Timothy J. Pelura; Glenn D. Frazer
Archive | 2002
David P. Hesson; Glenn D. Frazer; Bruce Shook
Archive | 2002
Glenn D. Frazer; David P. Hesson; Timothy J. Pelura; James C. Barnitz