Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Reichman is active.

Publication


Featured researches published by David R. Reichman.


Nature Materials | 2013

Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide

Arend van der Zande; Pinshane Y. Huang; Daniel Chenet; Timothy C. Berkelbach; Youmeng You; Gwan Hyoung Lee; Tony F. Heinz; David R. Reichman; David A. Muller; James Hone

Recent progress in large-area synthesis of monolayer molybdenum disulphide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapour deposition synthesis to grow highly crystalline islands of monolayer molybdenum disulphide up to 120 μm in size with optical and electrical properties comparable or superior to exfoliated samples. Using transmission electron microscopy, we correlate lattice orientation, edge morphology and crystallinity with island shape to demonstrate that triangular islands are single crystals. The crystals merge to form faceted tilt and mirror twin boundaries that are stitched together by lines of 8- and 4-membered rings. Density functional theory reveals localized mid-gap states arising from these 8-4 defects. We find that mirror twin boundaries cause strong photoluminescence quenching whereas tilt boundaries cause strong enhancement. Meanwhile, mirror twin boundaries slightly increase the measured in-plane electrical conductivity, whereas tilt boundaries slightly decrease the conductivity.


Nature | 2003

DRYING-MEDIATED SELF-ASSEMBLY OF NANOPARTICLES

Eran Rabani; David R. Reichman; Phillip L. Geissler; Louis E. Brus

Systems far from equilibrium can exhibit complex transitory structures, even when equilibrium fluctuations are mundane. A dramatic example of this phenomenon has recently been demonstrated for thin-film solutions of passivated nanocrystals during the irreversible evaporation of the solvent. The relatively weak attractions between nanocrystals, which are efficiently screened in solution, become manifest as the solvent evaporates, initiating assembly of intricate, slowly evolving structures. Although certain aspects of this aggregation process can be explained using thermodynamic arguments alone, it is in principle a non-equilibrium process. A representation of this process as arising from the phase separation between a dense nanocrystal ‘liquid’ and dilute nanocrystal ‘vapour’ captures some of the behaviour observed in experiments, but neglects entirely the role of solvent fluctuations, which can be considerable on the nanometre length scale. Here we present a coarse-grained model of nanoparticle self-assembly that explicitly includes the dynamics of the evaporating solvent. Simulations using this model not only account for all observed spatial and temporal patterns, but also predict network structures that have yet to be explored. Two distinct mechanisms of ordering emerge, corresponding to the homogeneous and heterogeneous limits of evaporation dynamics. Our calculations show how different choices of solvent, nanoparticle size (and identity) and thermodynamic state give rise to the various morphologies of the final structures. The resulting guide for designing statistically patterned arrays of nanoparticles suggests the possibility of fabricating spontaneously organized nanoscale devices.


Science | 2011

Visualizing Individual Nitrogen Dopants in Monolayer Graphene

Liuyan Zhao; Rui He; Kwang Taeg Rim; Theanne Schiros; Keun Soo Kim; Hui Zhou; Christopher Gutierrez; Subbaiah Chockalingam; Carlos J. Arguello; Lucia Palova; Dennis Nordlund; Mark S. Hybertsen; David R. Reichman; Tony F. Heinz; Philip Kim; Aron Pinczuk; George W. Flynn; Abhay Pasupathy

Nitrogen atoms that replace carbon atoms in the graphene lattice strongly modify the local electronic structure. In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.


Nature | 2009

Soft colloids make strong glasses

Johan Mattsson; Hans M. Wyss; Alberto Fernandez-Nieves; Kunimasa Miyazaki; Zhibing Hu; David R. Reichman; David A. Weitz

Glass formation in colloidal suspensions has many of the hallmarks of glass formation in molecular materials. For hard-sphere colloids, which interact only as a result of excluded volume, phase behaviour is controlled by volume fraction, φ; an increase in φ drives the system towards its glassy state, analogously to a decrease in temperature, T, in molecular systems. When φ increases above φ* ≈ 0.53, the viscosity starts to increase significantly, and the system eventually moves out of equilibrium at the glass transition, φg ≈ 0.58, where particle crowding greatly restricts structural relaxation. The large particle size makes it possible to study both structure and dynamics with light scattering and imaging; colloidal suspensions have therefore provided considerable insight into the glass transition. However, hard-sphere colloidal suspensions do not exhibit the same diversity of behaviour as molecular glasses. This is highlighted by the wide variation in behaviour observed for the viscosity or structural relaxation time, τα, when the glassy state is approached in supercooled molecular liquids. This variation is characterized by the unifying concept of fragility, which has spurred the search for a ‘universal’ description of dynamic arrest in glass-forming liquids. For ‘fragile’ liquids, τα is highly sensitive to changes in T, whereas non-fragile, or ‘strong’, liquids show a much lower T sensitivity. In contrast, hard-sphere colloidal suspensions are restricted to fragile behaviour, as determined by their φ dependence, ultimately limiting their utility in the study of the glass transition. Here we show that deformable colloidal particles, when studied through their concentration dependence at fixed temperature, do exhibit the same variation in fragility as that observed in the T dependence of molecular liquids at fixed volume. Their fragility is dictated by elastic properties on the scale of individual colloidal particles. Furthermore, we find an equivalent effect in molecular systems, where elasticity directly reflects fragility. Colloidal suspensions may thus provide new insight into glass formation in molecular systems.


Physical Review B | 2013

Theory of neutral and charged excitons in monolayer transition metal dichalcogenides

Timothy C. Berkelbach; Mark S. Hybertsen; David R. Reichman

We present a microscopic theory of neutral excitons and charged excitons (trions) in monolayers of transition metal dichalcogenides, including molybdenum disulfide. Our theory is based on an effective mass model of excitons and trions, parametrized by ab initio calculations and incorporating a proper treatment of screening in two dimensions. The calculated exciton binding energies are in good agreement with high-level many-body computations based on the Bethe-Salpeter equation. Furthermore, our calculations for the more complex trion species compare very favorably with recent experimental measurements, and provide atomistic insight into the microscopic features which determine the trion binding energy.


Nano Letters | 2012

Connecting dopant bond type with electronic structure in n-doped graphene

Theanne Schiros; Dennis Nordlund; Lucia Palova; Deborah Prezzi; Liuyan Zhao; Keun Soo Kim; Ulrich Wurstbauer; Christopher Gutierrez; Dean M. DeLongchamp; Cherno Jaye; Daniel A. Fischer; Hirohito Ogasawara; Lars G. M. Pettersson; David R. Reichman; Philip Kim; Mark S. Hybertsen; Abhay Pasupathy

Robust methods to tune the unique electronic properties of graphene by chemical modification are in great demand due to the potential of the two dimensional material to impact a range of device applications. Here we show that carbon and nitrogen core-level resonant X-ray spectroscopy is a sensitive probe of chemical bonding and electronic structure of chemical dopants introduced in single-sheet graphene films. In conjunction with density functional theory based calculations, we are able to obtain a detailed picture of bond types and electronic structure in graphene doped with nitrogen at the sub-percent level. We show that different N-bond types, including graphitic, pyridinic, and nitrilic, can exist in a single, dilutely N-doped graphene sheet. We show that these various bond types have profoundly different effects on the carrier concentration, indicating that control over the dopant bond type is a crucial requirement in advancing graphene electronics.


Journal of Chemical Physics | 2008

Theory of coherent resonance energy transfer

Seogjoo Jang; Yuan-Chung Cheng; David R. Reichman; Joel D. Eaves

A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Forster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.


Nature Physics | 2008

Irreversible reorganization in a supercooled liquid originates from localized soft modes

Asaph Widmer-Cooper; Heidi Perry; Peter Harrowell; David R. Reichman

A simulation establishes the relationship between structural relaxation in a supercooled liquid and the low-frequency dynamics in the underlying inherent structures.


Journal of Chemical Physics | 2013

Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange.

Timothy C. Berkelbach; Mark S. Hybertsen; David R. Reichman

We apply our theoretical formalism for singlet exciton fission, introduced in the previous paper [T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, J. Chem. Phys. 138, 114102 (2013)] to molecular dimers of pentacene, a widely studied material that exhibits singlet fission in the crystal phase. We address a longstanding theoretical issue, namely whether singlet fission proceeds via two sequential electron transfer steps mediated by charge-transfer states or via a direct two-electron transfer process. We find evidence for a superexchange mediated mechanism, whereby the fission process proceeds through virtual charge-transfer states which may be very high in energy. In particular, this mechanism predicts efficient singlet fission on the sub-picosecond timescale, in reasonable agreement with experiment. We investigate the role played by molecular vibrations in mediating relaxation and decoherence, finding that different physically reasonable forms for the bath relaxation function give similar results. We also examine the competing direct coupling mechanism and find it to yield fission rates slower in comparison with the superexchange mechanism for the dimer. We discuss implications for crystalline pentacene, including the limitations of the dimer model.


Accounts of Chemical Research | 2013

The Quantum Coherent Mechanism for Singlet Fission: Experiment and Theory

Wai-Lun Chan; Timothy C. Berkelbach; Makenzie R. Provorse; Nicholas R. Monahan; John R. Tritsch; Mark S. Hybertsen; David R. Reichman; Jiali Gao; X.-Y. Zhu

The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline tetracene lattice satisfactorily accounts for the experimental observations. It also reveals the critical roles of the charge transfer states and the high dephasing rates in ensuring the ultrafast formation of multiexciton states. In addition, we address the origins of microscopic relaxation and dephasing rates, and adopt these rates in a quantum master equation description. We show the need to take the theoretical effort one step further in the near future by combining high-level electronic structure calculations with accurate quantum relaxation dynamics for large systems.

Collaboration


Dive into the David R. Reichman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Hybertsen

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Cohen

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Giulio Biroli

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge