Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Spiegel is active.

Publication


Featured researches published by David S. Spiegel.


The Astrophysical Journal | 2013

Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

Masayuki Kuzuhara; Motohide Tamura; Tomoyuki Kudo; Markus Janson; Ryo Kandori; Timothy D. Brandt; Christian Thalmann; David S. Spiegel; Beth A. Biller; Yasunori Hori; R. Suzuki; Adam Burrows; T. Henning; Edwin L. Turner; M. W. McElwain; Amaya Moro-Martin; Takuya Suenaga; Yasuhiro H. Takahashi; Jungmi Kwon; P. W. Lucas; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; H. Fujiwara; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano

Several exoplanets have recently been imaged at wide separations of >10?AU from their parent stars. These span a limited range of ages ( 0.5?mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160?Myr, GJ 504b has an estimated mass of 4 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5?AU exceeds the typical outer boundary of ~30?AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510 K) and has a bluer color (J ? H = ?0.23?mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.


American Journal of Physiology-cell Physiology | 1998

Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells

Jacob Pourati; Andrew Maniotis; David S. Spiegel; Jonathan L. Schaffer; James P. Butler; Jeffrey J. Fredberg; Donald E. Ingber; D. Stamenovic; Ning Wang

We tested the hypothesis that mechanical tension in the cytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, we either cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed that there was preexisting CSK tension in these cells and that the actin lattice was a primary stress-bearing component of the CSK. Second, to determine the extent to which that preexisting CSK tension could alter cell deformability, we developed a stretchable cell culture membrane system to impose a rapid mechanical distension (and presumably a rapid increase in CSK tension) on adherent endothelial cells. Altered cell deformability was quantitated as the shear stiffness measured by magnetic twisting cytometry. When membrane strain increased 2.5 or 5%, the cell stiffness increased 15 and 30%, respectively. Disruption of actin lattice with Cyto D abolished this stretch-induced increase in stiffness, demonstrating that the increased stiffness depended on the integrity of the actin CSK. Permeabilizing the cells with saponin and washing away ATP and Ca2+ did not inhibit the stretch-induced stiffening of the cell. These results suggest that the stretch-induced stiffening was primarily due to the direct mechanical changes in the forces distending the CSK but not to ATP- or Ca(2+)-dependent processes. Taken together, these results suggest preexisting CSK tension is a major determinant of cell deformability in adherent endothelial cells.We tested the hypothesis that mechanical tension in the cytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, we either cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed that there was preexisting CSK tension in these cells and that the actin lattice was a primary stress-bearing component of the CSK. Second, to determine the extent to which that preexisting CSK tension could alter cell deformability, we developed a stretchable cell culture membrane system to impose a rapid mechanical distension (and presumably a rapid increase in CSK tension) on adherent endothelial cells. Altered cell deformability was quantitated as the shear stiffness measured by magnetic twisting cytometry. When membrane strain increased 2.5 or 5%, the cell stiffness increased 15 and 30%, respectively. Disruption of actin lattice with Cyto D abolished this stretch-induced increase in stiffness, demonstrating that the increased stiffness depended on the integrity of the actin CSK. Permeabilizing the cells with saponin and washing away ATP and Ca2+ did not inhibit the stretch-induced stiffening of the cell. These results suggest that the stretch-induced stiffening was primarily due to the direct mechanical changes in the forces distending the CSK but not to ATP- or Ca2+-dependent processes. Taken together, these results suggest preexisting CSK tension is a major determinant of cell deformability in adherent endothelial cells.


The Astrophysical Journal | 2009

CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS

David S. Spiegel; Katie Silverio; Adam Burrows

Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planets atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planets upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient Kzz and find, as a function of particle size a, the values that Kzz must assume on the highly irradiated planets HD?209458b, HD?149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions Kzz must be at least a few times 107 cm2 s?1, even for a = 0.1 ?m, and increases to nearly 1011 cm2 s?1 for a = 10 ?m. Such large values may be problematic for the TiO hypothesis, but are not impossible.


The Astrophysical Journal | 2011

The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets

David S. Spiegel; Adam Burrows; John A. Milsom

There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an object’s mass, taking the �13-Jupiter mass (MJ) limit for the ignition of deuterium. Here, we investigate various deuterium-burning masses for a range of models. We find that, while 13MJ is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an object’s initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the object’s mass is �(13.0±0.8)MJ, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from �11.0 MJ (for 3-times solar metallicity, 10% of initial deuterium burned) to �16.3 MJ (for zero metallicity, 90% of initial deuterium burned). Subject headings: radiative transfer – stars: low-mass, brown dwarfs – stars: evolution


Monthly Notices of the Royal Astronomical Society | 2010

Tides and tidal engulfment in post-main-sequence binaries: period gaps for planets and brown dwarfs around white dwarfs

J. Nordhaus; David S. Spiegel; Laurent Ibgui; Jeremy Goodman; Adam Burrows

The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outows. During post-main-sequence evolution, radial expansion of the primary star, accompanied by intense winds, can signicantly alter the binary orbit via tidal dissipation and mass loss. To investigate this, we couple stellar evolution models (from the zero-age main-sequence through the end of the post-main sequence) to a tidal evolution code. The binary’s fate is determined by the initial masses of the primary and the companion, the initial orbit (taken to be circular), and the Reimers mass-loss parameter. For a range of these parameters, we determine whether the orbit expands due to mass loss or decays due to tidal torques. Where a common envelope (CE) phase ensues, we estimate the nal orbital separation based on the energy required to unbind the envelope. These calculations predict period gaps for planetary and brown dwarf companions to white dwarfs. The upper end of the gap is the shortest period at which a CE phase is avoided. The lower end is the longest period at which companions survive their CE phase. For binary systems with 1 M progenitors, we predict no Jupitermass companions with periods .270 days. Once engulfed, Jupiter-mass companions do not survive a CE phase. For binary systems consisting of a 1 M progenitor with a companion 10 times the mass of Jupiter, we predict a period gap between 0.1 and 380 days. These results are consistent with both the detection of a 50 MJ brown dwarf in a 0.003 AU ( 0.08 day) orbit around the white dwarf WD 0137-349 and the tentative detection of a 2 MJ planet in a &2.7 AU (&4 year) orbit around the white dwarf GD66.


Monthly Notices of the Royal Astronomical Society | 2013

On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets

Jason Nordhaus; David S. Spiegel

The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass loss during the giant phases; previous studies have not incorporated changes in the primarys spin. For companions ranging from Jupiters mass to ~0.3 Msun and primaries ranging from 1-3 Msun, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the white dwarf habitable zone requires scattering from a several-AU orbit to a high-eccentricity orbit (with a periastron of ~Rsun) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.


The Astrophysical Journal | 2009

HABITABLE CLIMATES: THE INFLUENCE OF OBLIQUITY

David S. Spiegel; Kristen Menou; Caleb A. Scharf

Extrasolar terrestrial planets with the potential to host life might have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably well the seasonal cycle of global energetic fluxes at Earths surface. It also performs satisfactorily against a full-physics climate model of a highly oblique Earth-like planet, in an unusual regime of circulation dominated by heat transport from the poles to the equator. Climates on oblique terrestrial planets can violate global radiative balance through much of their seasonal cycle, which limits the usefulness of simple radiative equilibrium arguments. High obliquity planets have severe climates, with large amplitude seasonal variations, but they are not necessarily more prone to global snowball transitions than low obliquity planets. We find that terrestrial planets with massive CO2 atmospheres, typically expected in the outer regions of habitable zones, can also be subject to such dynamical snowball transitions. Some of the snowball climates investigated for CO2-rich atmospheres experience partial atmospheric collapse. Since long-term CO2 atmospheric build-up acts as a climatic thermostat for habitable planets, partial CO2 collapse could limit the habitability of such planets. A terrestrial planets habitability may thus sensitively depend on its short-term climatic stability.


The Astrophysical Journal | 2010

THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3

Francois Fressin; Heather A. Knutson; David Charbonneau; Francis T. O’Donovan; Adam Burrows; Drake Deming; Georgi Mandushev; David S. Spiegel

We use the Spitzer Space Telescope to estimate the dayside thermal emission of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 μm bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two secondary eclipses and find relative eclipse depths of 0.00346 ± 0.00035, 0.00372 ± 0.00054, 0.00449 ± 0.00097, and 0.00475 ± 0.00046, respectively, in the four IRAC bandpasses. We combine our results with the earlier K-band measurement of De Mooij et al., and compare them with models of the planetary emission. We find that the planet does not require the presence of an inversion layer in the high atmosphere. This is the first very strongly irradiated planet that does not have a temperature inversion, which indicates that stellar or planetary characteristics other than temperature have an important impact on temperature inversion. De Mooij & Snellen also detected a possible slight offset in the timing of the secondary eclipse in the K band. However, based on our four Spitzer channels, we place a 3σ upper limit of |ecos(ω)| < 0.0056, where e is the planets orbital eccentricity and ω is the longitude of the periastron. This result strongly indicates that the orbit is circular, as expected from tidal circularization theory.


The Astrophysical Journal | 2010

GENERALIZED MILANKOVITCH CYCLES AND LONG-TERM CLIMATIC HABITABILITY

David S. Spiegel; Sean N. Raymond; Courtney D. Dressing; Caleb A. Scharf; Jonathan L. Mitchell

Although Earths orbit is never far from circular, terrestrial planets around other stars might experience substantial changes in eccentricity. Eccentricity variations could lead to climate changes, including possible phase transitions such as the snowball transition (or its opposite). There is evidence that Earth has gone through at least one globally frozen, snowball state in the last billion years, which it is thought to have exited after several million years because global ice-cover shut off the carbonate-silicate cycle, thereby allowing greenhouse gases to build up to sufficient concentration to melt the ice. Due to the positive feedback caused by the high albedo of snow and ice, susceptibility to falling into snowball states might be a generic feature of water-rich planets with the capacity to host life. This paper has two main thrusts. First, we revisit one-dimensional energy balance climate models as tools for probing possible climates of exoplanets, investigate the dimensional scaling of such models, and introduce a simple algorithm to treat the melting of the ice layer on a globally frozen planet. We show that if a terrestrial planet undergoes Milankovitch-like oscillations of eccentricity that are of great enough magnitude, it could melt out of a snowball state. Second, we examine the kinds of variations of eccentricity that a terrestrial planet might experience due to the gravitational influence of a giant companion. We show that a giant planet on a sufficiently eccentric orbit can excite extreme eccentricity oscillations in the orbit of a habitable terrestrial planet. More generally, these two results demonstrate that the long-term habitability (and astronomical observables) of a terrestrial planet can depend on the detailed architecture of the planetary system in which it resides.


Monthly Notices of the Royal Astronomical Society | 2015

ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits

Hanno Rein; David S. Spiegel

We present IAS15, a 15th-order integrator to simulate gravitational dynamics. The integrator is based on a Gaus-Radau quadrature and can handle conservative as well as non-conservative forces. We develop a step-size control that can automatically choose an optimal timestep. The algorithm can handle close encounters and high-eccentricity orbits. The systematic errors are kept well below machine precision and long-term orbit integrations over 10 9 orbits show that IAS15 is optimal in the sense that it follows Brouwer’s law, i.e. the energy error behaves like a random walk. Our tests show that IAS15 is superior to a mixed-variable symplectic integrator (MVS) and other high-order integrators in both speed and accuracy. In fact, IAS15 preserves the symplecticity of Hamiltonian systems better than the commonly-used nominally symplectic integrators to which we compared it. We provide an open-source implementation of IAS15. The package comes with several easy-to-extend examples involving resonant planetary systems, Kozai-Lidov cycles, close encounters, radiation pressure, quadrupole moment, and generic damping functions that can, among other things, be used to simulate planet-disc interactions. Other non-conservative forces can be added easily.

Collaboration


Dive into the David S. Spiegel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney D. Dressing

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge