Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Courtney D. Dressing is active.

Publication


Featured researches published by Courtney D. Dressing.


The Astrophysical Journal | 2013

THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS

Francois Fressin; Guillermo Torres; David Charbonneau; Stephen T. Bryson; Jessie L. Christiansen; Courtney D. Dressing; Jon M. Jenkins; Lucianne M. Walkowicz; Natalie M. Batalha

The Kepler mission is uniquely suited to study the frequencies of extrasolar planets. This goal requires knowledge of the incidence of false positives such as eclipsing binaries in the background of the targets, or physically bound to them, which can mimic the photometric signal of a transiting planet. We perform numerical simulations of the Kepler targets and of physical companions or stars in the background to predict the occurrence of astrophysical false positives detectable by the mission. Using real noise level estimates, we compute the number and characteristics of detectable eclipsing pairs involving main-sequence stars and non-main-sequence stars or planets, and we quantify the fraction of those that would pass the Kepler candidate vetting procedure. By comparing their distribution with that of the Kepler Objects of Interest (KOIs) detected during the first six quarters of operation of the spacecraft, we infer the false positive rate of Kepler and study its dependence on spectral type, candidate planet size, and orbital period. We find that the global false positive rate of Kepler is 9.4%, peaking for giant planets (6-22 R ⊕) at 17.7%, reaching a low of 6.7% for small Neptunes (2-4 R ⊕), and increasing again for Earth-size planets (0.8-1.25 R ⊕) to 12.3%. Most importantly, we also quantify and characterize the distribution and rate of occurrence of planets down to Earth size with no prior assumptions on their frequency, by subtracting from the population of actual Kepler candidates our simulated population of astrophysical false positives. We find that 16.5% ± 3.6% of main-sequence FGK stars have at least one planet between 0.8 and 1.25 R ⊕ with orbital periods up to 85 days. This result is a significant step toward the determination of eta-earth, the occurrence of Earth-like planets in the habitable zone of their parent stars. There is no significant dependence of the rates of planet occurrence between 0.8 and 4 Earth radii with spectral type. In the process, we also derive a prescription for the signal recovery rate of Kepler that enables a good match to both the KOI size and orbital period distribution, as well as their signal-to-noise distribution.


The Astrophysical Journal | 2015

THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY

Courtney D. Dressing; David Charbonneau

We present an improved estimate of the occurrence rate of small planets orbiting small stars by searching the full four-year Kepler data set for transiting planets using our own planet detection pipeline and conducting transit injection and recovery simulations to empirically measure the search completeness of our pipeline. We identified 156 planet candidates, including one object that was not previously identified as a Kepler Object of Interest. We inspected all publicly available follow-up images, observing notes, and centroid analyses, and corrected for the likelihood of false positives. We evaluated the sensitivity of our detection pipeline on a star-by-star basis by injecting 2000 transit signals into the light curve of each target star. For periods shorter than 50 days, we find 0.56 (+0.06/-0.05) Earth-size planets (1-1.5 Earth radii) and 0.46 (+0.07/-0.05) super-Earths (1.5-2 Earth radii) per M dwarf. In total, we estimate a cumulative planet occurrence rate of


Proceedings of SPIE | 2014

Transiting Exoplanet Survey Satellite (TESS)

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

2.5\pm0.2


Journal of Astronomical Telescopes, Instruments, and Systems | 2014

Transiting Exoplanet Survey Satellite

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

planets per M dwarf with radii 1-4 Earth radii and periods shorter than 200 days. Within a conservatively defined habitable zone based on the moist greenhouse inner limit and maximum greenhouse outer limit, we estimate an occurrence rate of 0.16 (+0.17/-0.07) Earth-size planets and 0.12 (+0.10/-0.05) super-Earths per M dwarf habitable zone. Adopting the broader insolation boundaries of the recent Venus and early Mars limits yields a higher estimate of 0.24 (+0.18/-0.08) Earth-size planets and 0.21 (+0.11/-0.06) super-Earths per M dwarf habitable zone. This suggests that the nearest potentially habitable non-transiting and transiting Earth-size planets are


The Astrophysical Journal | 2012

Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

William J. Borucki; David G. Koch; Natalie M. Batalha; Stephen T. Bryson; Jason F. Rowe; Francois Fressin; Guillermo Torres; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Dimitar D. Sasselov; Alan P. Boss; David Charbonneau; David R. Ciardi; Lisa Kaltenegger; Laurance R. Doyle; Andrea K. Dupree; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

2.6\pm0.4


Nature | 2012

Two Earth-sized planets orbiting Kepler-20

Francois Fressin; Guillermo Torres; Jason F. Rowe; David Charbonneau; Leslie A. Rogers; Sarah Ballard; Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; David R. Ciardi; J.-M. Desert; Courtney D. Dressing; Daniel C. Fabrycky; Eric B. Ford; Thomas N. Gautier; Christopher E. Henze; Matthew J. Holman; Andrew W. Howard; Steve B. Howell; Jon M. Jenkins; David G. Koch; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Samuel N. Quinn; Darin Ragozzine; Dimitar D. Sasselov; Sara Seager; Fergal Mullally

pc and 10.6 (+1.6/-1.8) pc away, respectively. If we include super-Earths, these distances diminish to


Nature | 2013

An Earth-sized planet with an Earth-like density

F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; A. S. Bonomo; Lars A. Buchhave; David Charbonneau; Rosario Cosentino; Courtney D. Dressing; X. Dumusque; P. Figueira; Aldo F. M. Fiorenzano; S. Gettel; A. Harutyunyan; R. D. Haywood; K. Horne; Mercedes Lopez-Morales; Christophe Lovis; Luca Malavolta; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice; Dimitar D. Sasselov

2.1\pm0.2


The Astrophysical Journal | 2015

The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives

Peter W. Sullivan; Joshua N. Winn; Zachory K. Berta-Thompson; David Charbonneau; Drake Deming; Courtney D. Dressing; David W. Latham; Alan M. Levine; Peter Rankin McCullough; Timothy D. Morton; George R. Ricker; Roland Kraft Vanderspek; Deborah F. Woods

pc and 8.6 (+0.7/-0.8) pc.


The Astrophysical Journal | 2014

THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET*

X. Dumusque; A. S. Bonomo; R. D. Haywood; Luca Malavolta; D. Ségransan; Lars A. Buchhave; Andrew Collier Cameron; David W. Latham; Emilio Molinari; F. Pepe; S. Udry; David Charbonneau; Rosario Cosentino; Courtney D. Dressing; P. Figueira; Aldo F. M. Fiorenzano; S. Gettel; A. Harutyunyan; K. Horne; Mercedes Lopez-Morales; Christophe Lovis; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice

The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 2015

THE MASS OF KEPLER-93B AND THE COMPOSITION OF TERRESTRIAL PLANETS *

Courtney D. Dressing; David Charbonneau; X. Dumusque; S. Gettel; F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; L. Affer; A. S. Bonomo; Lars A. Buchhave; Rosario Cosentino; P. Figueira; Aldo F. M. Fiorenzano; A. Harutyunyan; R. D. Haywood; John Asher Johnson; Mercedes Lopez-Morales; Christophe Lovis; Luca Malavolta; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice

Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

Collaboration


Dive into the Courtney D. Dressing's collaboration.

Top Co-Authors

Avatar

David R. Ciardi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian J. M. Crossfield

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Howard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessie L. Christiansen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Fulton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik A. Petigura

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Evan Sinukoff

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge