David T. Kysela
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David T. Kysela.
Applied and Environmental Microbiology | 2002
Andreas Teske; Kai-Uwe Hinrichs; Virginia P. Edgcomb; Alvin de Vera Gomez; David T. Kysela; Sean P. Sylva; Mitchell L. Sogin; Holger W. Jannasch
ABSTRACT Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The δ-13C values of these lipids (δ-13C = −89 to −58‰) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Virginia P. Edgcomb; David T. Kysela; Andreas Teske; Alvin de Vera Gomez; Mitchell L. Sogin
Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Pamela J. B. Brown; Miguel A. de Pedro; David T. Kysela; Charles Van der Henst; Jinwoo Kim; Xavier De Bolle; Clay Fuqua; Yves V. Brun
Elongation of many rod-shaped bacteria occurs by peptidoglycan synthesis at discrete foci along the sidewall of the cells. However, within the Rhizobiales, there are many budding bacteria, in which new cell growth is constrained to a specific region. The phylogeny of the Rhizobiales indicates that this mode of zonal growth may be ancestral. We demonstrate that the rod-shaped bacterium Agrobacterium tumefaciens grows unidirectionally from the new pole generated after cell division and has an atypical peptidoglycan composition. Polar growth occurs under all conditions tested, including when cells are attached to a plant root and under conditions that induce virulence. Finally, we show that polar growth also occurs in the closely related bacteria Sinorhizobium meliloti, Brucella abortus, and Ochrobactrum anthropi. We find that unipolar growth is an ancestral and conserved trait among the Rhizobiales, which includes important mutualists and pathogens of plants and animals.
Molecular Microbiology | 2010
Cécile Berne; David T. Kysela; Yves V. Brun
In natural systems, bacteria form complex, surface‐attached communities known as biofilms. This lifestyle presents numerous advantages compared with unattached or planktonic life, such as exchange of nutrients, protection from environmental stresses and increased tolerance to biocides. Despite such benefits, dispersal also plays an important role in escaping deteriorating environments and in successfully colonizing favourable, unoccupied habitat patches. The α‐proteobacterium Caulobacter crescentus produces a motile swarmer cell and a sessile stalked cell at each cell division. We show here that C. crescentus extracellular DNA (eDNA) inhibits the ability of its motile cell type to settle in a biofilm. eDNA binds to the polar holdfast, an adhesive structure required for permanent surface attachment and biofilm formation, thereby inhibiting cell attachment. Because stalked cells associate tightly with the biofilm through their holdfast, we hypothesize that this novel mechanism acts on swarmer cells born in a biofilm, where eDNA can accumulate to a sufficient concentration to inhibit their ability to settle. By targeting a specific cell type in a biofilm, this mechanism modulates biofilm development and promotes dispersal without causing a potentially undesirable dissolution of the existing biofilm.
Seminars in Cell & Developmental Biology | 2011
Pamela J. B. Brown; David T. Kysela; Yves V. Brun
Bacterial cell growth is a complex process consisting of two distinct phases: cell elongation and septum formation prior to cell division. Although bacteria have evolved several different mechanisms for cell growth, it is clear that tight spatial and temporal regulation of peptidoglycan synthesis is a common theme. In this review, we discuss bacterial cell growth with a particular emphasis on bacteria that utilize tip extension as a mechanism for cell elongation. We describe polar growth among diverse bacteria and consider the advantages and consequences of this mode of cell elongation.
Annual Review of Microbiology | 2013
David T. Kysela; Pamela J. B. Brown; Kerwyn Casey Huang; Yves V. Brun
Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.
Journal of Bacteriology | 2011
Pamela J. B. Brown; David T. Kysela; Aaron Buechlein; Chris Hemmerich; Yves V. Brun
The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.
Science | 2017
Courtney K. Ellison; Jingbo Kan; Rebecca S. Dillard; David T. Kysela; Adrien Ducret; Cécile Berne; Cheri M. Hampton; Zunlong Ke; Elizabeth R. Wright; Nicolas Biais; Ankur B. Dalia; Yves V. Brun
Elucidating a bacterial sense of touch Bacteria can adhere to surfaces within the host. This leads to tissue colonization, induction of virulence, and eventually the formation of biofilms—multicellular bacterial communities that resist antibiotics and clearance by the immune system (see the Perspective by Hughes and Berg). Hug et al. show that bacteria have a sense of touch that allows them to change their behavior rapidly when encountering surfaces. This tactile sensing makes use of the inner components of the flagellum, a rotary motor powered by proton motif force that facilitates swimming toward surfaces. Thus, the multifunctional flagellar motor is a mechanosensitive device that promotes surface adaptation. In complementary work, Ellison et al. elucidate the role of bacterial pili in a similar surface-sensing role. Science, this issue p. 531, p. 535; see also p. 446 Bacteria sense surfaces via the resistance imparted on retracting surface-bound pili. It is critical for bacteria to recognize surface contact and initiate physiological changes required for surface-associated lifestyles. Ubiquitous microbial appendages called pili are involved in sensing surfaces and facilitating downstream behaviors, but the mechanism by which pili mediate surface sensing has been unclear. We visualized Caulobacter crescentus pili undergoing dynamic cycles of extension and retraction. Within seconds of surface contact, these cycles ceased, which coincided with synthesis of the adhesive holdfast required for attachment. Physically blocking pili imposed resistance to pilus retraction, which was sufficient to stimulate holdfast synthesis without surface contact. Thus, to sense surfaces, bacteria use the resistance on retracting, surface-bound pili that occurs upon surface contact.
PLOS Biology | 2016
David T. Kysela; Amelia M. Randich; Paul D. Caccamo; Yves V. Brun
The modern age of metagenomics has delivered unprecedented volumes of data describing the genetic and metabolic diversity of bacterial communities, but it has failed to provide information about coincident cellular morphologies. Much like metabolic and biosynthetic capabilities, morphology comprises a critical component of bacterial fitness, molded by natural selection into the many elaborate shapes observed across the bacterial domain. In this essay, we discuss the diversity of bacterial morphology and its implications for understanding both the mechanistic and the adaptive basis of morphogenesis. We consider how best to leverage genomic data and recent experimental developments in order to advance our understanding of bacterial shape and its functional importance.
Analytical Chemistry | 2015
Michelle D. Hoffman; Lauren I. Zucker; Pamela J. B. Brown; David T. Kysela; Yves V. Brun; Stephen C. Jacobson
In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to irreversible adhesion.