Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. J. Thompson is active.

Publication


Featured researches published by David W. J. Thompson.


Journal of Climate | 2000

Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability*

David W. J. Thompson; John M. Wallace

The leading modes of variability of the extratropical circulation in both hemispheres are characterized by deep, zonally symmetric or ‘‘annular’’ structures, with geopotential height perturbations of opposing signs in the polar cap region and in the surrounding zonal ring centered near 458 latitude. The structure and dynamics of the Southern Hemisphere (SH) annular mode have been extensively documented, whereas the existence of a Northern Hemisphere (NH) mode, herein referred to as the Arctic Oscillation (AO), has only recently been recognized. Like the SH mode, the AO can be defined as the leading empirical orthogonal function of the sea level pressure field or of the zonally symmetric geopotential height or zonal wind fields. In this paper the structure and seasonality of the NH and SH modes are compared based on data from the National Centers for Environmental Prediction‐National Center for Atmospheric Research reanalysis and supplementary datasets. The structures of the NH and SH annular modes are shown to be remarkably similar, not only in the zonally averaged geopotential height and zonal wind fields, but in the mean meridional circulations as well. Both exist year-round in the troposphere, but they amplify with height upward into the stratosphere during those seasons in which the strength of the zonal flow is conducive to strong planetary wave‐mean flow interaction: midwinter in the NH and late spring in the SH. During these ‘‘active seasons,’’ the annular modes modulate the strength of the Lagrangian mean circulation in the lower stratosphere, total column ozone and tropopause height over mid- and high latitudes, and the strength of the trade winds of their respective hemispheres. The NH mode also contains an embedded planetary wave signature with expressions in surface air temperature, precipitation, total column ozone, and tropopause height. It is argued that the horizontal temperature advection by the perturbed zonal-mean zonal wind field in the lower troposphere is instrumental in forcing this pattern. A companion paper documents the striking resemblance between the structure of the annular modes and observed climate trends over the past few decades.


Journal of Climate | 2000

Annular Modes in the Extratropical Circulation. Part II: Trends

David W. J. Thompson; John M. Wallace; Gabriele C. Hegerl

The authors exploit the remarkable similarity between recent climate trends and the structure of the ‘‘annular modes’’ in the month-to-month variability (as described in a companion paper) to partition the trends into components linearly congruent with and linearly independent of the annular modes. The index of the Northern Hemisphere (NH) annular mode, referred to as the Arctic Oscillation (AO), has exhibited a trend toward the high index polarity over the past few decades. The largest and most significant trends are observed during the ‘‘active season’’ for stratospheric planetary wave‐mean flow interaction, January‐ March (JFM), when fluctuations in the AO amplify with height into the lower stratosphere. For the periods of record considered, virtually all of the JFM geopotential height falls over the polar cap region and the strengthening of the subpolar westerlies from the surface to the lower stratosphere, ;50% of the JFM warming over the Eurasian continent, ;30% of the JFM warming over the NH as a whole, ;40% of the JFM stratospheric cooling over the polar cap region, and ;40% of the March total column ozone losses poleward of 408N are linearly congruent with month-to-month variations in the AO index. Summertime sea level pressure falls over the Arctic basin are suggestive of a year-round drift toward the positive polarity of the AO, but the evidence is less conclusive. Owing to the photochemical memory inherent in the ozone distribution, roughly half the ozone depletion during the NH summer months is linearly dependent on AO-related ozone losses incurred during the previous active season. Lower-tropospheric geopotential height falls over the Antarctic polar cap region are indicative of a drift toward the high index polarity of the Southern Hemisphere (SH) annular mode with no apparent seasonality. In contrast, the trend toward a cooling and strengthening of the SH stratospheric polar vortex peaks sharply during the stratosphere’s relatively short active season centered in November. The most pronounced SH ozone losses have occurred in September‐October, one or two months prior to this active season. In both hemispheres, positive feedbacks involving ozone destruction, cooling, and a weakening of the wave-driven meridional circulation may be contributing to a delayed breakdown of the polar vortex and enhanced ozone losses during spring.


Journal of Climate | 2002

Stratospheric Connection to Northern Hemisphere Wintertime Weather: Implications for Prediction

David W. J. Thompson; Mark P. Baldwin; John M. Wallace

The dynamical coupling between the stratospheric and tropospheric circulations yields a statistically significant level of potential predictability for extreme cold events throughout much of the Northern Hemisphere (NH) mid‐high latitudes on both month-to-month and winter-to-winter timescales. Pronounced weakenings of the NH wintertime stratospheric polar vortex tend to be followed by episodes of anomalously low surface air temperatures and increased frequency of occurrence of extreme cold events throughout densely populated regions such as eastern North America, northern Europe, and eastern Asia that persist for ;2 months. Strengthenings of the vortex tend to be followed by surface temperature anomalies in the opposite sense. During midwinter, the quasibiennial oscillation (QBO) in the equatorial stratosphere has a similar but somewhat weaker impact on NH weather, presumably through its impact on the strength and stability of the stratospheric polar vortex; that is, the easterly phase of the QBO favors an increased incidence of extreme cold events, and vice versa. The signature of the QBO in NH wintertime temperatures is roughly comparable in amplitude to that observed in relation to


Journal of Climate | 2007

Australian Rainfall and Surface Temperature Variations Associated with the Southern Hemisphere Annular Mode

Harry H. Hendon; David W. J. Thompson; Matthew C. Wheeler

Abstract Daily variations in Australian rainfall and surface temperature associated with the Southern Hemisphere annular mode (SAM) are documented using observations for the period 1979–2005. The high index polarity of the SAM is characterized by a poleward contraction of the midlatitude westerlies. During winter, the high index polarity of the SAM is associated with decreased daily rainfall over southeast and southwest Australia, but during summer it is associated with increased daily rainfall on the southern east coast of Australia and decreased rainfall in western Tasmania. Variations in the SAM explain up to ∼15% of the weekly rainfall variance in these regions, which is comparable to the variance accounted for by the El Nino–Southern Oscillation, especially during winter. The most widespread temperature anomalies associated with the SAM occur during the spring and summer seasons, when the high index polarity of the SAM is associated with anomalously low maximum temperature over most of central/easter...


Journal of Climate | 2006

Observed Relationships between the El Niño–Southern Oscillation and the Extratropical Zonal-Mean Circulation

Michelle L. L’Heureux; David W. J. Thompson

Abstract There is increasing evidence indicating that the climate response to variations in the El Nino–Southern Oscillation (ENSO) includes not only thermally forced zonal wind anomalies in the subtropics but also eddy-driven zonal wind anomalies that extend into the mid–high latitudes of both hemispheres. In this study, new insights into the observed seasonally varying signature of ENSO in the extratropical zonal-mean circulation are provided and the associated linkages with the dominant patterns of extratropical variability are examined. The zonal-mean extratropical atmospheric response to ENSO is characterized by two principal features: an equivalent barotropic dipole in the Southern Hemisphere (SH) zonal-mean zonal flow with centers of action located near ∼40° and ∼60° during austral summer, and a weaker, but analogous, dipole in the Northern Hemisphere (NH) with centers of action located near ∼25° and ∼45° during early and late boreal winter. Both structures are accompanied by eddy momentum flux ano...


Journal of Geophysical Research | 2009

An update of observed stratospheric temperature trends

William J. Randel; Keith P. Shine; John Austin; John J. Barnett; Chantal Claud; Nathan P. Gillett; Philippe Keckhut; Ulrike Langematz; Roger Lin; Craig S. Long; Carl A. Mears; Alvin J. Miller; John Nash; Dian J. Seidel; David W. J. Thompson; Fei Wu; Shigeo Yoden

An updated analysis of observed stratospheric temperature variability and trends is presented on the basis of satellite, radiosonde, and lidar observations. Satellite data include measurements from the series of NOAA operational instruments, including the Microwave Sounding Unit covering 1979–2007 and the Stratospheric Sounding Unit (SSU) covering 1979–2005. Radiosonde results are compared for six different data sets, incorporating a variety of homogeneity adjustments to account for changes in instrumentation and observational practices. Temperature changes in the lower stratosphere show cooling of ∼0.5 K/decade over much of the globe for 1979–2007, with some differences in detail among the different radiosonde and satellite data sets. Substantially larger cooling trends are observed in the Antarctic lower stratosphere during spring and summer, in association with development of the Antarctic ozone hole. Trends in the lower stratosphere derived from radiosonde data are also analyzed for a longer record (back to 1958); trends for the presatellite era (1958–1978) have a large range among the different homogenized data sets, implying large trend uncertainties. Trends in the middle and upper stratosphere have been derived from updated SSU data, taking into account changes in the SSU weighting functions due to observed atmospheric CO2 increases. The results show mean cooling of 0.5–1.5 K/decade during 1979–2005, with the greatest cooling in the upper stratosphere near 40–50 km. Temperature anomalies throughout the stratosphere were relatively constant during the decade 1995–2005. Long records of lidar temperature measurements at a few locations show reasonable agreement with SSU trends, although sampling uncertainties are large in the localized lidar measurements. Updated estimates of the solar cycle influence on stratospheric temperatures show a statistically significant signal in the tropics (∼30°N–S), with an amplitude (solar maximum minus solar minimum) of ∼0.5 K (lower stratosphere) to ∼1.0 K (upper stratosphere).


Nature | 2008

A large discontinuity in the mid-twentieth century in observed global-mean surface temperature

David W. J. Thompson; John Kennedy; John M. Wallace; Phil D. Jones

Data sets used to monitor the Earth’s climate indicate that the surface of the Earth warmed from ∼1910 to 1940, cooled slightly from ∼1940 to 1970, and then warmed markedly from ∼1970 onward. The weak cooling apparent in the middle part of the century has been interpreted in the context of a variety of physical factors, such as atmosphere–ocean interactions and anthropogenic emissions of sulphate aerosols. Here we call attention to a previously overlooked discontinuity in the record at 1945, which is a prominent feature of the cooling trend in the mid-twentieth century. The discontinuity is evident in published versions of the global-mean temperature time series, but stands out more clearly after the data are filtered for the effects of internal climate variability. We argue that the abrupt temperature drop of ∼0.3 °C in 1945 is the apparent result of uncorrected instrumental biases in the sea surface temperature record. Corrections for the discontinuity are expected to alter the character of mid-twentieth century temperature variability but not estimates of the century-long trend in global-mean temperatures.


Journal of Climate | 2002

The Pacific Center of Action of the Northern Hemisphere Annular Mode: Real or Artifact?

John M. Wallace; David W. J. Thompson

The leading empirical orthogonal function (EOF) of the sea level pressure (SLP) field, referred to as the Arctic Oscillation (AO) or Northern Hemisphere annular mode (NAM), consists of a dipole between the polar cap region and the surrounding zonal ring centered along 458N. Embedded within the outer ring are centers of action over the Euro-Atlantic and Pacific sectors in which SLP fluctuates in phase. That the observed SLP fluctuations at these two centers of action are virtually uncorrelated raises the question of whether the Pacific center in the annular mode could be an artifact of EOF analysis. It is argued that sea level pressure fluctuations at the Pacific and Euro-Atlantic centers of action of the AO/ NAM would be more strongly correlated were it not for the fact that SLP variability over the North Pacific is dominated by a pattern in which fluctuations over the North Atlantic and North Pacific are inversely related. Evidence of the coexistence of such a pattern, which resembles an augmented version of the Pacific‐North American pattern, is presented.


Journal of Climate | 2010

The Steady-State Atmospheric Circulation Response to Climate Change–like Thermal Forcings in a Simple General Circulation Model

Amy H. Butler; David W. J. Thompson; Ross Heikes

Abstract The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in the tropical troposphere drives two robust responses in the model extratropical circulation: poleward shifts in the extratropical tropospheric storm tracks and a weakened stratospheric Brewer–Dobson circulation. The former result suggests heating in the tropical troposphere plays a fundamental role in the poleward contraction of the storm tracks found in Intergovernmental Panel on Climate Change (IPCC)-class climate change simulations; the latter result is in the opposite sense of the trends in the Brewer–Dobson circulation found in most previous climate change experiments. 2) Cooling in the polar stratosp...


Journal of the Atmospheric Sciences | 2005

Stratosphere–Troposphere Coupling in the Southern Hemisphere

David W. J. Thompson; Mark P. Baldwin; Susan Solomon

Abstract This study examines the temporal evolution of the tropospheric circulation following large-amplitude variations in the strength of the Southern Hemisphere (SH) stratospheric polar vortex in data from 1979 to 2001 and following the SH sudden stratospheric warming of 2002. In both cases, anomalies in the strength of the SH stratospheric polar vortex precede similarly signed anomalies in the tropospheric circulation that persist for more than 2 months. The SH tropospheric circulation anomalies reflect a bias in the polarity of the SH annular mode (SAM), a large-scale pattern of climate variability characterized by fluctuations in the strength of the SH circumpolar flow. Consistent with the climate impacts of the SAM, variations in the stratospheric polar vortex are also followed by coherent changes in surface temperatures throughout much of Antarctica. The results add to a growing body of evidence that suggests that stratospheric variability plays an important role in driving climate variability at ...

Collaboration


Dive into the David W. J. Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Solomon

Earth System Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Randel

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Ying Li

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Birner

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy H. Butler

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge