Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark K. Mammel is active.

Publication


Featured researches published by Mark K. Mammel.


PLOS ONE | 2007

Multiple antimicrobial resistance in plague: An emerging public health risk

Timothy J. Welch; W. Florian Fricke; Patrick F. McDermott; David G. White; Marie Laure Rosso; David A. Rasko; Mark K. Mammel; Mark Eppinger; M. J. Rosovitz; David M. Wagner; Lila Rahalison; J. Eugene LeClerc; Jeffrey M. Hinshaw; Luther E. Lindler; Thomas A. Cebula; Elisabeth Carniel; Jacques Ravel

Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern.


Journal of Bacteriology | 2009

Comparative Genomics of the IncA/C Multidrug Resistance Plasmid Family

W. Florian Fricke; Timothy J. Welch; Patrick F. McDermott; Mark K. Mammel; J. Eugene LeClerc; David G. White; Thomas A. Cebula; Jacques Ravel

Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genomic anatomy of Escherichia coli O157:H7 outbreaks

Mark Eppinger; Mark K. Mammel; Joseph E. LeClerc; Jacques Ravel; Thomas A. Cebula

The rapid emergence of Escherichia coli O157:H7 from an unknown strain in 1982 to the dominant hemorrhagic E. coli serotype in the United States and the cause of widespread outbreaks of human food-borne illness highlights a need to evaluate critically the extent to which genomic plasticity of this important enteric pathogen contributes to its pathogenic potential and its evolution as well as its adaptation in different ecological niches. Aimed at a better understanding of the evolution of the E. coli O157:H7 pathogenome, the present study presents the high-quality sequencing and comparative phylogenomic analysis of a comprehensive panel of 25 E. coli O157:H7 strains associated with three nearly simultaneous food-borne outbreaks of human disease in the United States. Here we present a population genetic analysis of more than 200 related strains recovered from patients, contaminated produce, and zoonotic sources. High-resolution phylogenomic approaches allow the dynamics of pathogenome evolution to be followed at a high level of phylogenetic accuracy and resolution. SNP discovery and study of genome architecture and prophage content identified numerous biomarkers to assess the extent of genetic diversity within a set of clinical and environmental strains. A total of 1,225 SNPs were identified in the present study and are now available for typing of the E. coli O157:H7 lineage. These data should prove useful for the development of a refined phylogenomic framework for forensic, diagnostic, and epidemiological studies to define better risk in response to novel and emerging E. coli O157:H7 resistance and virulence phenotypes.


Applied and Environmental Microbiology | 2009

Antimicrobial Resistance-Conferring Plasmids with Similarity to Virulence Plasmids from Avian Pathogenic Escherichia coli Strains in Salmonella enterica Serovar Kentucky Isolates from Poultry

W. Florian Fricke; Patrick F. McDermott; Mark K. Mammel; Shaohua Zhao; Timothy J. Johnson; David A. Rasko; Paula J. Fedorka-Cray; Adriana Pedroso; Jean M. Whichard; J. Eugene LeClerc; David G. White; Thomas A. Cebula; Jacques Ravel

ABSTRACT Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [blaCMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.


Microbiology | 2008

Optical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak

Michael L. Kotewicz; Mark K. Mammel; J. Eugene LeClerc; Thomas A. Cebula

Optical maps for five representative clinical, food-borne and bovine-derived isolates from the 2006 Escherichia coli O157 : H7 outbreak linked to fresh spinach in the United States showed a common set of 14 distinct chromosomal markers that define the outbreak strain. Partial 454 DNA sequencing was used to characterize the optically mapped chromosomal markers. The markers included insertions, deletions, substitutions and a simple single nucleotide polymorphism creating a BamHI site. The Shiga toxin gene profile of the spinach-associated outbreak isolates (stx1(-) stx2(+) stx2c(+)) correlated with prophage insertions different from those in the prototypical EDL933 and Sakai reference strains (stx1(+) stx2(+) stx2c(-)). The prophage occupying the yehV chromosomal position in the spinach-associated outbreak isolates was similar to the stx1(+) EDL933 cryptic prophage V, but it lacked the stx1 gene. In EDL933, the stx2 genes are within prophage BP933-W at the wrbA chromosomal locus; this locus was unoccupied in the spinach outbreak isolates. Instead, the stx2 genes were found within a chimeric BP933-W-like prophage with a different integrase, inserted at the argW locus in the outbreak isolates. An extra set of Shiga toxin genes, stx2c, was found in the outbreak isolates within a prophage integrated at the sbcB locus. The optical maps of two additional clinical isolates from the outbreak showed a single, different prophage variation in each, suggesting that changes occurred in the source strain during the course of this widespread, multi-state outbreak.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens

Eric W. Brown; Mark K. Mammel; J. Eugene LeClerc; Thomas A. Cebula

Recombination is thought to be rare within Salmonella, as evidenced by absence of gene transfer among SARC strains that represent the broad genetic diversity of the eight primary subspecies of this common facultative intracellular pathogen. We adopted a phylogenetic approach to assess recombination within the mutS gene of 70 SARB strains, a genetically homogeneous population of Salmonella enterica subspecies I strains, which have in common the ability to infect warm-blooded animals. We report here that SARB strains show evidence for widespread recombinational exchange in contrast to results obtained with strains exhibiting species-level genetic variation. Besides extensive allele shuffling, SARB strains showed notably larger recombinagenic patch sizes for mutS (at least ≈1.1 kb) than previously reported for S. enterica SARC strains. Explaining these experimental dichotomies provides important insight for understanding microbial evolution, because they suggest likely ecologic and genetic barriers that limit extensive gene transfer in the feral setting.


Applied and Environmental Microbiology | 2015

Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach

Susan R. Leonard; Mark K. Mammel; David W. Lacher; Christopher A. Elkins

ABSTRACT Culture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producing Escherichia coli (STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such as Pseudomonas, Pantoea, and Exiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection.


PLOS ONE | 2012

High density microarray analysis reveals new insights into genetic footprints of Listeria monocytogenes strains involved in listeriosis outbreaks.

Pongpan Laksanalamai; Scott A. Jackson; Mark K. Mammel; Atin R. Datta

Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism.


Journal of Bacteriology | 2008

Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak

Amit Mukherjee; Mark K. Mammel; J. Eugene LeClerc; Thomas A. Cebula

In silico analyses of previously sequenced strains of Escherichia coli O157:H7, EDL933 and Sakai, localized the gene cluster for the utilization of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam). This gene cluster encodes the Aga phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and other catabolic enzymes responsible for transport and catabolism of Aga. As the complete coding sequences for enzyme IIA (EIIA)(Aga/Gam), EIIB(Aga), EIIC(Aga), and EIID(Aga) of the Aga PTS are present, E. coli O157:H7 strains normally are able to utilize Aga as a sole carbon source. The Gam PTS complex, in contrast, lacks EIIC(Gam), and consequently, E. coli O157:H7 strains cannot utilize Gam. Phenotypic analyses of 120 independent isolates of E. coli O157:H7 from our culture collection revealed that the overwhelming majority (118/120) displayed the expected Aga+ Gam- phenotype. Yet, when 194 individual isolates, derived from a 2006 spinach-associated E. coli O157:H7 outbreak, were analyzed, all (194/194) displayed an Aga- Gam- phenotype. Comparison of aga/gam sequences from two spinach isolates with those of EDL933 and Sakai revealed a single nucleotide change (G:C-->A:T) in the agaF gene in the spinach-associated isolates. The base substitution in agaF, which encodes EIIA(Aga/Gam) of the PTS, changes a conserved glycine residue to serine (Gly91Ser). Pyrosequencing of this region showed that all spinach-associated E. coli O157:H7 isolates harbored this same G:C-->A:T substitution. Notably, when agaF+ was cloned into an expression vector and transformed into six spinach isolates, all (6/6) were able to grow on Aga, thus demonstrating that the Gly91Ser substitution underlies the Aga- phenotype in these isolates.


Expert Review of Molecular Diagnostics | 2005

Molecular applications for identifying microbial pathogens in the post-9/11 era.

Thomas A. Cebula; Eric W. Brown; Scott A. Jackson; Mark K. Mammel; Amit Mukherjee; J. Eugene LeClerc

Rapid advances in molecular and optical technologies over the past 10 years have dramatically impacted the way biologic research is conducted today. Examples include microarrays, capillary sequencing, optical mapping and real-time sequencing (Pyrosequencing). These technologies are capable of rapidly delivering massive amounts of genetic information and are becoming routine mainstays of many laboratories. Fortunately, advances in scientific computing have provided the enormous computing power necessary to analyze these enormous data sets. The application of molecular technologies should prove useful to the burgeoning field of microbial forensics. In the post-9/11 era, when securing America’s food supply is a major endeavor, the need for rapid identification of microbes that accidentally or intentionally find their way into foods is apparent. The principle that distinguishes a microbial forensic investigation from a molecular epidemiology study is that a biocrime has been committed. If proper attribution is to be attained, a link must be made between a particular microbe in the food and the perpetrator who placed it there. Therefore, the techniques used must be able to discriminate individual isolates of a particular microbe. A battery of techniques in development for distinguishing individual isolates of particular foodborne pathogens is discussed.

Collaboration


Dive into the Mark K. Mammel's collaboration.

Top Co-Authors

Avatar

Christopher A. Elkins

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isha R. Patel

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

David W. Lacher

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jayanthi Gangiredla

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

J. Eugene LeClerc

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben D. Tall

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Gopal Gopinath

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Mark Eppinger

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge