Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean A. Lee is active.

Publication


Featured researches published by Dean A. Lee.


Leukemia | 2009

New insights to the MLL recombinome of acute leukemias

Claus Meyer; E. Kowarz; J. Hofmann; Aline Renneville; Jan Zuna; Jan Trka; R. Ben Abdelali; Elizabeth Macintyre; E De Braekeleer; M. De Braekeleer; E. Delabesse; M. P. de Oliveira; H Cavé; Emmanuelle Clappier; J J M van Dongen; Brian V. Balgobind; M.M. van den Heuvel-Eibrink; H B Beverloo; Renate Panzer-Grümayer; A. Teigler-Schlegel; J. Harbott; E. Kjeldsen; S. Schnittger; U. Koehl; Bernd Gruhn; Olaf Heidenreich; Li Chong Chan; S. F. Yip; Martin Krzywinski; Cornelia Eckert

Chromosomal rearrangements of the human MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemias. These patients need to be identified, treated appropriately and minimal residual disease was monitored by quantitative PCR techniques. Genomic DNA was isolated from individual acute leukemia patients to identify and characterize chromosomal rearrangements involving the human MLL gene. A total of 760 MLL-rearranged biopsy samples obtained from 384 pediatric and 376 adult leukemia patients were characterized at the molecular level. The distribution of MLL breakpoints for clinical subtypes (acute lymphoblastic leukemia, acute myeloid leukemia, pediatric and adult) and fused translocation partner genes (TPGs) will be presented, including novel MLL fusion genes. Combined data of our study and recently published data revealed 104 different MLL rearrangements of which 64 TPGs are now characterized on the molecular level. Nine TPGs seem to be predominantly involved in genetic recombinations of MLL: AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, MLLT4/AF6, ELL, EPS15/AF1P, MLLT6/AF17 and SEPT6, respectively. Moreover, we describe for the first time the genetic network of reciprocal MLL gene fusions deriving from complex rearrangements.


Blood | 2012

A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR.

Hiroki Torikai; Andreas Reik; Pei Qi Liu; Yuanyue Zhou; Ling Zhang; Sourindra Maiti; Helen Huls; Jeffrey C. Miller; Partow Kebriaei; Brian Rabinovitch; Dean A. Lee; Richard E. Champlin; Chiara Bonini; Luigi Naldini; Edward J. Rebar; Philip D. Gregory; Michael C. Holmes; Laurence J.N. Cooper

Clinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients. This was achieved by genetically editing CD19-specific CAR(+) T cells to eliminate expression of the endogenous αβ T-cell receptor (TCR) to prevent a graft-versus-host response without compromising CAR-dependent effector functions. Genetically modified T cells were generated using the Sleeping Beauty system to stably introduce the CD19-specific CAR with subsequent permanent deletion of α or β TCR chains with designer zinc finger nucleases. We show that these engineered T cells display the expected property of having redirected specificity for CD19 without responding to TCR stimulation. CAR(+)TCR(neg) T cells of this type may potentially have efficacy as an off-the-shelf therapy for investigational treatment of B-lineage malignancies.


Cancer Research | 2015

Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity

Hillary G. Caruso; Lenka V. Hurton; Amer Najjar; David Rushworth; Sonny Ang; Simon Olivares; Tiejuan Mi; Kirsten Switzer; Harjeet Singh; Helen Huls; Dean A. Lee; Amy B. Heimberger; Richard E. Champlin; Laurence J.N. Cooper

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Cancer Research | 2011

Reprogramming CD19-Specific T Cells with IL-21 Signaling Can Improve Adoptive Immunotherapy of B-Lineage Malignancies

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Helen Huls; Simon Olivares; Kirsten Switzer; Tiejuan Mi; Sourindra Maiti; Partow Kebriaei; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy.


Journal of Clinical Investigation | 2016

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

Partow Kebriaei; Harjeet Singh; M. Helen Huls; Matthew J. Figliola; Roland L. Bassett; Simon Olivares; Bipulendu Jena; Margaret J. Dawson; Pappanaicken R. Kumaresan; Shihuang Su; Sourindra Maiti; Jianliang Dai; Branden S. Moriarity; Marie Andrée Forget; Vladimir Senyukov; Aaron Orozco; Tingting Liu; Jessica McCarty; Rineka Jackson; Judy S. Moyes; Gabriela Rondon; Muzaffar H. Qazilbash; Stefan O. Ciurea; Amin M. Alousi; Yago Nieto; Katy Rezvani; David Marin; Uday Popat; Chitra Hosing; Elizabeth J. Shpall

BACKGROUND T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.


Human Gene Therapy | 2010

piggyBac Transposon/Transposase System to Generate CD19-Specific T Cells for the Treatment of B-Lineage Malignancies

Pallavi R. Manuri; Matthew H. Wilson; Sourindra Maiti; Tiejuan Mi; Harjeet Singh; Simon Olivares; Margaret J. Dawson; Helen Huls; Dean A. Lee; Pulivarthi H. Rao; Joseph M. Kaminski; Yozo Nakazawa; Stephen Gottschalk; Partow Kebriaei; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.


Human Gene Therapy | 2012

Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies

Partow Kebriaei; Helen Huls; Bipulendu Jena; Mark F. Munsell; Rineka Jackson; Dean A. Lee; Perry B. Hackett; Gabriela Rondon; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.


Journal of Visualized Experiments | 2011

Expansion, purification, and functional assessment of human peripheral blood NK cells.

Srinivas S. Somanchi; Vladimir Senyukov; Cecele J. Denman; Dean A. Lee

Natural killer (NK) cells play an important role in immune surveillance against a variety of infectious microorganisms and tumors. Limited availability of NK cells and ability to expand in vitro has restricted development of NK cell immunotherapy. Here we describe a method to efficiently expand vast quantities of functional NK cells ex vivo using K562 cells expressing membrane-bound IL21, as an artificial antigen-presenting cell (aAPC). NK cell adoptive therapies to date have utilized a cell product obtained by steady-state leukapheresis of the donor followed by depletion of T cells or positive selection of NK cells. The product is usually activated in IL-2 overnight and then administered the following day. Because of the low frequency of NK cells in peripheral blood, relatively small numbers of NK cells have been delivered in clinical trials. The inability to propagate NK cells in vitro has been the limiting factor for generating sufficient cell numbers for optimal clinical outcome. Some expansion of NK cells (5-10 fold over 1-2 weeks) has be achieved through high-dose IL-2 alone. Activation of autologous T cells can mediate NK cell expansion, presumably also through release of local cytokine. Support with mesenchymal stroma or artificial antigen presenting cells (aAPCs) can support the expansion of NK cells from both peripheral blood and cord blood. Combined NKp46 and CD2 activation by antibody-coated beads is currently marketed for NK cell expansion (Miltenyi Biotec, Auburn CA), resulting in approximately 100-fold expansion in 21 days. Clinical trials using aAPC-expanded or -activated NK cells are underway, one using leukemic cell line CTV-1 to prime and activate NK cells without significant expansion. A second trial utilizes EBV-LCL for NK cell expansion, achieving a mean 490-fold expansion in 21 days. The third utilizes a K562-based aAPC transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mIL-15), which achieved a mean NK expansion 277-fold in 21 days. Although, the NK cells expanded using K562-41BBL-mIL15 aAPC are highly cytotoxic in vitro and in vivo compared to unexpanded NK cells, and participate in ADCC, their proliferation is limited by senescence attributed to telomere shortening. More recently a 350-fold expansion of NK cells was reported using K562 expressing MICA, 4-1BBL and IL15. Our method of NK cell expansion described herein produces rapid proliferation of NK cells without senescence achieving a median 21,000-fold expansion in 21 days.


Stem Cells Translational Medicine | 2013

Clinical-Scale Derivation of Natural Killer Cells From Human Pluripotent Stem Cells for Cancer Therapy

David A. Knorr; Zhenya Ni; David Hermanson; Melinda K. Hexum; Laura Bendzick; Laurence J.N. Cooper; Dean A. Lee; Dan S. Kaufman

Adoptive transfer of antitumor lymphocytes has gained intense interest in the field of cancer therapeutics over the past two decades. Human natural killer (NK) cells are a promising source of lymphocytes for anticancer immunotherapy. NK cells are part of the innate immune system and exhibit potent antitumor activity without need for human leukocyte antigen matching and without prior antigen exposure. Moreover, the derivation of NK cells from pluripotent stem cells could provide an unlimited source of lymphocytes for off‐the‐shelf therapy. To date, most studies on hematopoietic cell development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have used incompletely defined conditions and been on a limited scale. Here, we have used a two‐stage culture system to efficiently produce NK cells from hESCs and iPSCs in the absence of cell sorting and without need for xenogeneic stromal cells. This novel combination of embryoid body formation using defined conditions and membrane‐bound interleukin 21‐expressing artificial antigen‐presenting cells allows production of mature and functional NK cells from several different hESC and iPSC lines. Although different hESC and iPSC lines had varying efficiencies in hematopoietic development, all cell lines tested could produce functional NK cells. These methods can be used to generate enough cytotoxic NK cells to treat a single patient from fewer than 250,000 input hESCs/iPSCs. Additionally, this strategy provides a genetically amenable platform to study normal NK cell development and education in vitro.


PLOS ONE | 2013

Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

Bipulendu Jena; Sourindra Maiti; Helen Huls; Harjeet Singh; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

Collaboration


Dive into the Dean A. Lee's collaboration.

Top Co-Authors

Avatar

Laurence J.N. Cooper

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richard E. Champlin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Shpall

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Helen Huls

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Simon Olivares

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Partow Kebriaei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sourindra Maiti

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Harjeet Singh

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srinivas S. Somanchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriela Rondon

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge