Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debanu Das is active.

Publication


Featured researches published by Debanu Das.


Nature | 2011

Improved molecular replacement by density- and energy-guided protein structure optimization

Frank DiMaio; Thomas C. Terwilliger; Randy J. Read; Alexander Wlodawer; Gustav Oberdorfer; Ulrike Wagner; Eugene Valkov; Assaf Alon; Deborah Fass; Herbert L. Axelrod; Debanu Das; Sergey M. Vorobiev; Hideo Iwai; P. Raj Pokkuluri; David Baker

Molecular replacement procedures, which search for placements of a starting model within the crystallographic unit cell that best account for the measured diffraction amplitudes, followed by automatic chain tracing methods, have allowed the rapid solution of large numbers of protein crystal structures. Despite extensive work, molecular replacement or the subsequent rebuilding usually fail with more divergent starting models based on remote homologues with less than 30% sequence identity. Here we show that this limitation can be substantially reduced by combining algorithms for protein structure modelling with those developed for crystallographic structure determination. An approach integrating Rosetta structure modelling with Autobuild chain tracing yielded high-resolution structures for 8 of 13 X-ray diffraction data sets that could not be solved in the laboratories of expert crystallographers and that remained unsolved after application of an extensive array of alternative approaches. We estimate that the new method should allow rapid structure determination without experimental phase information for over half the cases where current methods fail, given diffraction data sets of better than 3.2 Å resolution, four or fewer copies in the asymmetric unit, and the availability of structures of homologous proteins with >20% sequence identity.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Structure of the γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases

Qingping Xu; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Xiaohui Cai; Dennis Carlton; Connie Chen; Hsiu Ju Chiu; Michelle Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; Winnie W. Lam; David Marciano; Mitchell D. Miller

The crystal structure of the highly specific γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu reveals the structural basis for the substrate specificity of NlpC/P60-family cysteine peptidases.


Journal of Molecular Biology | 2010

Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that May Discriminate Substrates During DNA Repair

Debanu Das; Davide Moiani; Herbert L. Axelrod; Mitchell D. Miller; Daniel McMullan; Kevin K. Jin; Polat Abdubek; Tamara Astakhova; Prasad Burra; Dennis Carlton; Hsiu Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Dustin Ernst; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Slawomir K. Grzechnik; Gye Won Han; Lukasz Jaroszewski; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; David Marciano; Andrew T. Morse; Edward Nigoghossian; Linda Okach

Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only approximately 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1.

Raymond D. Blind; Elena P. Sablin; Kristopher Kuchenbecker; Hsiu-Ju Chiu; Ashley M. Deacon; Debanu Das; Robert J. Fletterick; Holly A. Ingraham

Significance We previously reported that lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP2 and PIP3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. We propose that this new surface acts as a PIP3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides. The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As.


Acta Crystallographica Section D-biological Crystallography | 2012

Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum

Axel T. Brunger; Debanu Das; Ashley M. Deacon; Joanna C. Grant; Thomas C. Terwilliger; Randy J. Read; Paul D. Adams; Michael Levitt; Gunnar F. Schröder

DEN refinement and automated model building with AutoBuild were used to determine the structure of a putative succinyl-diaminopimelate desuccinylase from C. glutamicum. This difficult case of molecular-replacement phasing shows that the synergism between DEN refinement and AutoBuild outperforms standard refinement protocols.


Journal of Molecular Biology | 2010

Bacterial Pleckstrin Homology Domains: a Prokaryotic Origin for the Ph Domain

Qingping Xu; Alex Bateman; Robert D. Finn; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Dennis Carlton; Connie Chen; Hsiu Ju Chiu; Michelle Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Dustin Ernst; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; David Marciano

Pleckstrin homology (PH) domains have been identified only in eukaryotic proteins to date. We have determined crystal structures for three members of an uncharacterized protein family (Pfam PF08000), which provide compelling evidence for the existence of PH-like domains in bacteria (PHb). The first two structures contain a single PHb domain that forms a dome-shaped, oligomeric ring with C5 symmetry. The third structure has an additional helical hairpin attached at the C-terminus and forms a similar but much larger ring with C12 symmetry. Thus, both molecular assemblies exhibit rare, higher-order, cyclic symmetry but preserve a similar arrangement of their PHb domains, which gives rise to a conserved hydrophilic surface at the intersection of the β-strands of adjacent protomers that likely mediates protein–protein interactions. As a result of these structures, additional families of PHb domains were identified, suggesting that PH domains are much more widespread than originally anticipated. Thus, rather than being a eukaryotic innovation, the PH domain superfamily appears to have existed before prokaryotes and eukaryotes diverged.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron.

Qingping Xu; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Xiaohui Cai; Dennis Carlton; Connie Chen; Hsiu Ju Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; Winnie W. Lam; David Marciano; Mitchell D. Miller; Andrew T. Morse

The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed.


Journal of Biological Chemistry | 2009

Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes

Qingping Xu; Bjørn A. Traag; Joost Willemse; Daniel McMullan; Mitchell D. Miller; Marc-André Elsliger; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Dennis Carlton; Connie Chen; Hsiu-Ju Chiu; Maksymilian Chruszcz; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Dustin Ernst; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Slawomir K. Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth

SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.


Journal of Molecular Biology | 2009

A structural basis for the regulatory inactivation of DnaA.

Qingping Xu; Daniel McMullan; Polat Abdubek; Tamara Astakhova; Dennis Carlton; Connie Chen; Hsiu-Ju Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Marc-André Elsliger; Julie Feuerhelm; Joanna Hale; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Hope A. Johnson; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; David Marciano; Mitchell D. Miller; Andrew T. Morse; Edward Nigoghossian; Amanda Nopakun; Linda Okach; Silvya Oommachen

Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.


Journal of Structural Biology | 2015

Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.

Elena P. Sablin; Raymond D. Blind; Rubatharshini Uthayaruban; Hsiu-Ju Chiu; Ashley M. Deacon; Debanu Das; Holly A. Ingraham; Robert J. Fletterick

The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1.

Collaboration


Dive into the Debanu Das's collaboration.

Top Co-Authors

Avatar

Heath E. Klock

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Herbert L. Axelrod

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark W. Knuth

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Mitchell D. Miller

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joanna C. Grant

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Julie Feuerhelm

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Marc C. Deller

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas Clayton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Abhinav Kumar

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis Carlton

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge