Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Morrogh is active.

Publication


Featured researches published by Deborah Morrogh.


Journal of Investigative Dermatology | 2013

Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS

V.A. Kinsler; Anna Thomas; Miho Ishida; Neil W. Bulstrode; Sam Loughlin; Sandra Hing; Jane Chalker; Kathryn McKenzie; Sayeda Abu-Amero; Olga Slater; Estelle Chanudet; Rodger Palmer; Deborah Morrogh; Philip Stanier; Eugene Healy; Nj Sebire; Gudrun E. Moore

Congenital melanocytic nevi (CMN) can be associated with neurological abnormalities and an increased risk of melanoma. Mutations in NRAS, BRAF, and Tp53 have been described in individual CMN samples; however, their role in the pathogenesis of multiple CMN within the same subject and development of associated features has not been clear. We hypothesized that a single postzygotic mutation in NRAS could be responsible for multiple CMN in the same individual, as well as for melanocytic and nonmelanocytic central nervous system (CNS) lesions. From 15 patients, 55 samples with multiple CMN were sequenced after site-directed mutagenesis and enzymatic digestion of the wild-type allele. Oncogenic missense mutations in codon 61 of NRAS were found in affected neurological and cutaneous tissues of 12 out of 15 patients, but were absent from unaffected tissues and blood, consistent with NRAS mutation mosaicism. In 10 patients, the mutation was consistently c.181C>A, p.Q61K, and in 2 patients c.182A>G, p.Q61R. All 11 non-melanocytic and melanocytic CNS samples from 5 patients were mutation positive, despite NRAS rarely being reported as mutated in CNS tumors. Loss of heterozygosity was associated with the onset of melanoma in two cases, implying a multistep progression to malignancy. These results suggest that single postzygotic NRAS mutations are responsible for multiple CMN and associated neurological lesions in the majority of cases.


Journal of Medical Genetics | 2016

Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis

Natalie Trump; Amy McTague; Helen Brittain; Apostolos Papandreou; Esther Meyer; Adeline Ngoh; Rodger Palmer; Deborah Morrogh; Christopher Boustred; Jane Hurst; Lucy Jenkins; Manju A. Kurian; Richard H. Scott

Background We sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay. Methods In 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis. Results We identified causative mutations in 71/400 patients (18%). The diagnostic rate was highest among those with seizure onset within the first two months of life (39%), although overall it was similar in those with and without seizures. The most frequently mutated gene was SCN2A (11 patients, 3%). Other recurrently mutated genes included CDKL5, KCNQ2, SCN8A (six patients each), FOXG1, MECP2, SCN1A, STXBP1 (five patients each), KCNT1, PCDH19, TCF4 (three patients each) and ATP1A3, PRRT2 and SLC9A6 (two patients each). Mutations in EHMT1, GABRB3, LGI1, MBD5, PIGA, UBE3A and ZEB2 were each found in single patients. We found mutations in a number of genes in patients where either the electroclinical features or dysmorphic phenotypes were atypical for the identified gene. In only 11 cases (15%) had the clinician sufficient certainty to specify the mutated gene as the likely cause before testing. Conclusions Our data demonstrate the considerable utility of a gene panel approach in the diagnosis of patients with early-onset epilepsy and severe developmental delay disorders., They provide further insights into the phenotypic spectrum and genotype–phenotype correlations for a number of the causative genes and emphasise the value of exon-level copy number testing in their analysis.


Nature Genetics | 2017

Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

Esther Meyer; Keren J. Carss; Julia Rankin; John M E Nichols; Detelina Grozeva; Agnel Praveen Joseph; Niccolo E. Mencacci; Apostolos Papandreou; Joanne Ng; Serena Barral; Adeline Ngoh; M.A.A.P. Willemsen; David Arkadir; Angela Barnicoat; Hagai Bergman; Sanjay Bhate; Amber Boys; Niklas Darin; Nicola Foulds; Nicholas Gutowski; Alison Hills; Henry Houlden; Jane A. Hurst; Zvi Israel; Margaret Kaminska; Patricia Limousin; Daniel E. Lumsden; Shane McKee; Shibalik Misra; Ss Mohammed

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


American Journal of Human Genetics | 2014

Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome

Anna Thomas; H Williams; Núria Setó-Salvia; Chiara Bacchelli; Dagan Jenkins; Mary O'Sullivan; Konstantinos Mengrelis; Miho Ishida; Louise Ocaka; Estelle Chanudet; Chela James; Francesco Lescai; Glenn Anderson; Deborah Morrogh; Mina Ryten; Andrew J. Duncan; Yun Jin Pai; Jorge M. Saraiva; Fabiana Ramos; Bernadette Farren; Dawn E. Saunders; Bertrand Vernay; Paul Gissen; Anna Straatmaan-Iwanowska; Frank Baas; Nicholas W. Wood; Joshua Hersheson; Henry Houlden; Jane L. Hurst; Richard H. Scott

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


European Journal of Human Genetics | 2015

Malan syndrome: Sotos-like overgrowth with de novo NFIX sequence variants and deletions in six new patients and a review of the literature

Merel Klaassens; Deborah Morrogh; Elisabeth Rosser; Fatima Jaffer; Maaike Vreeburg; Levinus A. Bok; Tim Segboer; Martine van Belzen; R. Quinlivan; Ajith Kumar; Jane A. Hurst; Richard H. Scott

De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall–Smith syndrome. We report six additional patients with Malan syndrome and de novo NFIX deletions or sequence variants and review the 20 patients now reported. The phenotype is characterised by moderate postnatal overgrowth and macrocephaly. Median height and head circumference in childhood are 2.0 and 2.3 standard deviations (SD) above the mean, respectively. There is overlap of the facial phenotype with NSD1-positive Sotos syndrome in some cases including a prominent forehead, high anterior hairline, downslanting palpebral fissures and prominent chin. Neonatal feeding difficulties and/or hypotonia have been reported in 30% of patients. Developmental delay/learning disability have been reported in all cases and are typically moderate. Ocular phenotypes are common, including strabismus (65%), nystagmus (25% ) and optic disc pallor/hypoplasia (25%). Other recurrent features include pectus excavatum (40%) and scoliosis (25%). Eight reported patients have a deletion also encompassing CACNA1A, haploinsufficiency of which causes episodic ataxia type 2 or familial hemiplegic migraine. One previous case had episodic ataxia and one case we report has had cyclical vomiting responsive to pizotifen. In individuals with this contiguous gene deletion syndrome, awareness of possible later neurological manifestations is important, although their penetrance is not yet clear.


Journal of Clinical Investigation | 2017

Somatic mutations and progressive monosomy modify SAMD9 -related phenotypes in humans

Federica Buonocore; Peter Kühnen; Jenifer Suntharalingham; Ignacio del Valle; Martin Digweed; Harald Stachelscheid; Noushafarin Khajavi; Mohammed Didi; Angela F. Brady; Oliver Blankenstein; Annie M. Procter; Paul Dimitri; J. K. H. Wales; Paolo Ghirri; Dieter Knöbl; Brigitte Strahm; Miriam Erlacher; Marcin W. Wlodarski; Wei Chen; George Kokai; Glenn Anderson; Deborah Morrogh; Dale Moulding; Shane McKee; Charlotte M. Niemeyer; Annette Grüters; John C. Achermann

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile &agr; motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.


Pediatric Nephrology | 2011

Sotos syndrome, infantile hypercalcemia, and nephrocalcinosis: a contiguous gene syndrome

Joanna Kenny; Melissa Lees; Susan Drury; Angela Barnicoat; William van’t Hoff; Rodger Palmer; Deborah Morrogh; Jonathan J. Waters; Nicholas Lench; Detlef Bockenhauer

Sotos syndrome is characterized by overgrowth, a typical facial appearance, and learning difficulties. It is caused by heterozygous mutations, including deletions, of NSD1 located at chromosome 5q35. Here we report two unrelated cases of Sotos syndrome associated with nephrocalcinosis. One patient also had idiopathic infantile hypercalcemia. Genetic investigations revealed heterozygous deletions at 5q35 in both patients, encompassing NSD1 and SLC34A1 (NaPi2a). Mutations in SLC34A1 have previously been associated with hypercalciuria/nephrolithiasis. Our cases suggest a contiguous gene deletion syndrome including NSD1 and SLC34A1 and provide a potential genetic basis for idiopathic infantile hypercalcemia.


European Journal of Human Genetics | 2017

Chromosomal microarray testing in adults with intellectual disability presenting with comorbid psychiatric disorders

Kate Wolfe; Andre Strydom; Deborah Morrogh; Jennifer Carter; Peter Cutajar; Mo Eyeoyibo; Angela Hassiotis; Jane McCarthy; Raja Mukherjee; Dimitrios Paschos; Nagarajan Perumal; Stephen Read; Rohit Shankar; Saif Sharif; Suchithra Thirulokachandran; Johan H. Thygesen; Christine Patch; Caroline Mackie Ogilvie; Frances Flinter; Andrew McQuillin; Nick Bass

Chromosomal copy-number variations (CNVs) are a class of genetic variants highly implicated in the aetiology of neurodevelopmental disorders, including intellectual disabilities (ID), schizophrenia and autism spectrum disorders (ASD). Yet the majority of adults with idiopathic ID presenting to psychiatric services have not been tested for CNVs. We undertook genome-wide chromosomal microarray analysis (CMA) of 202 adults with idiopathic ID recruited from community and in-patient ID psychiatry services across England. CNV pathogenicity was assessed using standard clinical diagnostic methods and participants underwent comprehensive medical and psychiatric phenotyping. We found an 11% yield of likely pathogenic CNVs (22/202). CNVs at recurrent loci, including the 15q11-q13 and 16p11.2-p13.11 regions were most frequently observed. We observed an increased frequency of 16p11.2 duplications compared with those reported in single-disorder cohorts. CNVs were also identified in genes known to effect neurodevelopment, namely NRXN1 and GRIN2B. Furthermore deletions at 2q13, 12q21.2-21.31 and 19q13.32, and duplications at 4p16.3, 13q32.3-33.3 and Xq24-25 were observed. Routine CMA in ID psychiatry could uncover ~11% new genetic diagnoses with potential implications for patient management. We advocate greater consideration of CMA in the assessment of adults with idiopathic ID presenting to psychiatry services.


Acta neuropathologica communications | 2014

The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test.

Alexia Boizot; Yasmina Talmat-Amar; Deborah Morrogh; Nancy L. Kuntz; Cécile Halbert; Brigitte Chabrol; Henry Houlden; Tanya Stojkovic; Brenda A. Schulman; Bernd Rautenstrauss; Pascale Bomont

BackgroundThe BTB-KELCH protein Gigaxonin plays key roles in sustaining neuron survival and cytoskeleton architecture. Indeed, recessive mutations in the Gigaxonin-encoding gene cause Giant Axonal Neuropathy (GAN), a severe neurodegenerative disorder characterized by a wide disorganization of the Intermediate Filament network. Growing evidences suggest that GAN is a continuum with the peripheral neuropathy Charcot-Marie-Tooth diseases type 2 (CMT2). Sharing similar sensory-motor alterations and aggregation of Neurofilaments, few reports have revealed that GAN and some CMT2 forms can be misdiagnosed on clinical and histopathological examination. The goal of this study is to propose a new differential diagnostic test for GAN/CMT2. Moreover, we aim at identifying the mechanisms causing the loss-of-function of Gigaxonin, which has been proposed to bind CUL3 and substrates as part of an E3 ligase complex.ResultsWe establish that determining Gigaxonin level constitutes a very valuable diagnostic test in discriminating new GAN cases from clinically related inherited neuropathies. Indeed, in a set of seven new families presenting a neuropathy resembling GAN/CMT2, only five exhibiting a reduced Gigaxonin abundance have been subsequently genetically linked to GAN. Generating the homology modeling of Gigaxonin, we suggest that disease mutations would lead to a range of defects in Gigaxonin stability, impairing its homodimerization, BTB or KELCH domain folding, or CUL3 and substrate binding. We further demonstrate that regardless of the mutations or the severity of the disease, Gigaxonin abundance is severely reduced in all GAN patients due to both mRNA and protein instability mechanisms.ConclusionsIn this study, we developed a new penetrant and specific test to diagnose GAN among a set of individuals exhibiting CMT2 of unknown etiology to suggest that the prevalence of GAN is probably under-evaluated among peripheral neuropathies. We propose to use this new test in concert with the clinical examination and prior to the systematic screening of GAN mutations that has shown strong limitations for large deletions. Combining the generation of the structural modeling of Gigaxonin to an analysis of Gigaxonin transcripts and proteins in patients, we provide the first evidences of the instability of this E3 ligase adaptor in disease.


Orphanet Journal of Rare Diseases | 2017

An example of the utility of genomic analysis for fast and accurate clinical diagnosis of complex rare phenotypes

Polona Le Quesne Stabej; Chela James; Louise Ocaka; Mehmet Tekman; Stephanie Grunewald; Emma Clement; Horia Stanescu; Robert Kleta; Deborah Morrogh; Alistair Calder; Hywel Williams; Maria Bitner-Glindzicz

BackgroundWe describe molecular diagnosis in a complex consanguineous family: four offspring presented with combinations of three distinctive phenotypes; non-syndromic hearing loss (NSHL), an unusual skeletal phenotype comprising multiple fractures, cranial abnormalities and diaphyseal expansion, and significant developmental delay with microcephaly. We performed Chromosomal Microarray Analysis on the offspring with either the skeletal or developmental delay phenotypes, and linkage analysis and whole exome sequencing (WES) on all four children, parents and maternal aunt.ResultsChromosomal microarray and FISH analysis identified a de novo unbalanced translocation as a cause of the microcephaly and severe developmental delay. WES identified a NSHL-causing splice variant in an autosomal recessive deafness gene PDZD7 which resided in a linkage region and affected three of the children. In the two children diagnosed with an unusual skeletal phenotype, WES eventually disclosed a heterozygous COL1A1 variant which affects C-propetide cleavage site of COL1. The variant was inherited from an apparently unaffected mosaic father in an autosomal dominant fashion. After the discovery of the COL1A1 variant, the skeletal phenotype was diagnosed as a high bone mass form of osteogenesis imperfecta.ConclusionsNext generation sequencing offers an unbiased approach to molecular genetic diagnosis in highly heterogeneous and poorly characterised disorders and enables early diagnosis as well as detection of mosaicism.

Collaboration


Dive into the Deborah Morrogh's collaboration.

Top Co-Authors

Avatar

Anna Thomas

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Estelle Chanudet

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Henry Houlden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Miho Ishida

University College London

View shared research outputs
Top Co-Authors

Avatar

Rodger Palmer

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adeline Ngoh

University College London

View shared research outputs
Top Co-Authors

Avatar

Apostolos Papandreou

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Esther Meyer

University College London

View shared research outputs
Top Co-Authors

Avatar

Jane A. Hurst

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge