Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miho Ishida is active.

Publication


Featured researches published by Miho Ishida.


Journal of Investigative Dermatology | 2013

Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS

V.A. Kinsler; Anna Thomas; Miho Ishida; Neil W. Bulstrode; Sam Loughlin; Sandra Hing; Jane Chalker; Kathryn McKenzie; Sayeda Abu-Amero; Olga Slater; Estelle Chanudet; Rodger Palmer; Deborah Morrogh; Philip Stanier; Eugene Healy; Nj Sebire; Gudrun E. Moore

Congenital melanocytic nevi (CMN) can be associated with neurological abnormalities and an increased risk of melanoma. Mutations in NRAS, BRAF, and Tp53 have been described in individual CMN samples; however, their role in the pathogenesis of multiple CMN within the same subject and development of associated features has not been clear. We hypothesized that a single postzygotic mutation in NRAS could be responsible for multiple CMN in the same individual, as well as for melanocytic and nonmelanocytic central nervous system (CNS) lesions. From 15 patients, 55 samples with multiple CMN were sequenced after site-directed mutagenesis and enzymatic digestion of the wild-type allele. Oncogenic missense mutations in codon 61 of NRAS were found in affected neurological and cutaneous tissues of 12 out of 15 patients, but were absent from unaffected tissues and blood, consistent with NRAS mutation mosaicism. In 10 patients, the mutation was consistently c.181C>A, p.Q61K, and in 2 patients c.182A>G, p.Q61R. All 11 non-melanocytic and melanocytic CNS samples from 5 patients were mutation positive, despite NRAS rarely being reported as mutated in CNS tumors. Loss of heterozygosity was associated with the onset of melanoma in two cases, implying a multistep progression to malignancy. These results suggest that single postzygotic NRAS mutations are responsible for multiple CMN and associated neurological lesions in the majority of cases.


Molecular Aspects of Medicine | 2013

The role of imprinted genes in humans.

Miho Ishida; Gudrun E. Moore

Genomic imprinting, a process of epigenetic modification which allows the gene to be expressed in a parent-of-origin specific manner, has an essential role in normal growth and development. Imprinting is found predominantly in placental mammals, and has potentially evolved as a mechanism to balance parental resource allocation to the offspring. Therefore, genetic and epigenetic disruptions which alter the specific dosage of imprinted genes can lead to various developmental abnormalities often associated with fetal growth and neurological behaviour. Over the past 20 years since the first imprinted gene was discovered, many different mechanisms have been implicated in this special regulatory mode of gene expression. This review includes a brief summary of the current understanding of the key molecular events taking place during imprint establishment and maintenance in early embryos, and their relationship to epigenetic disruptions seen in imprinting disorders. Genetic and epigenetic causes of eight recognised imprinting disorders including Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS), and also their association with Assisted reproductive technology (ART) will be discussed. Finally, the role of imprinted genes in fetal growth will be explored by investigating their relationship to a common growth disorder, intrauterine growth restriction (IUGR) and also their potential role in regulating normal growth variation.


Philosophical Transactions of the Royal Society B | 2015

The role and interaction of imprinted genes in human fetal growth.

Gudrun E. Moore; Miho Ishida; Charalambos Demetriou; Lara Al-Olabi; Lydia J. Leon; Anna Thomas; Sayeda Abu-Amero; Jennifer M. Frost; Jaime L. Stafford; Yao Chaoqun; Andrew J. Duncan; Rachel Baigel; Marina Brimioulle; Isabel Iglesias-Platas; Sophia Apostolidou; Reena Aggarwal; John C. Whittaker; Argyro Syngelaki; Kypros H. Nicolaides; Lesley Regan; David Monk; Philip Stanier

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.


American Journal of Human Genetics | 2014

Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome

Anna Thomas; H Williams; Núria Setó-Salvia; Chiara Bacchelli; Dagan Jenkins; Mary O'Sullivan; Konstantinos Mengrelis; Miho Ishida; Louise Ocaka; Estelle Chanudet; Chela James; Francesco Lescai; Glenn Anderson; Deborah Morrogh; Mina Ryten; Andrew J. Duncan; Yun Jin Pai; Jorge M. Saraiva; Fabiana Ramos; Bernadette Farren; Dawn E. Saunders; Bertrand Vernay; Paul Gissen; Anna Straatmaan-Iwanowska; Frank Baas; Nicholas W. Wood; Joshua Hersheson; Henry Houlden; Jane L. Hurst; Richard H. Scott

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Nature Genetics | 2014

Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome

Sérgio B. Sousa; Dagan Jenkins; Estelle Chanudet; Guergana Tasseva; Miho Ishida; Glenn Anderson; James Docker; Mina Ryten; Joaquim de Sá; Jorge M. Saraiva; Angela Barnicoat; Richard W. Scott; Alistair Calder; Duangrurdee Wattanasirichaigoon; Krystyna H. Chrzanowska; Martina Simandlova; Lionel Van Maldergem; Philip Stanier; Philip L. Beales; Jean E. Vance; Gudrun E. Moore

Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.


Clinical Genetics | 2018

A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly

Miho Ishida; T Cullup; C Boustred; Chela James; J Docker; C English; GOSgene; N Lench; Andrew J. Copp; Gudrun E. Moore; Nde Greene; Philip Stanier

Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in‐house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop‐gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly.


PLOS Genetics | 2017

Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.

Martina Muggenthaler; Biswajit Chowdhury; S. Naimul Hasan; Harold E. Cross; Brian L. Mark; Gaurav V. Harlalka; Michael A. Patton; Miho Ishida; Elijah R. Behr; Sanjay Sharma; Kenneth G. Zahka; Eissa Faqeih; Brian W. Blakley; Michael F. Jackson; Melissa Lees; Vernon W. Dolinsky; Leroy Cross; Philip Stanier; Claire G. Salter; Emma L. Baple; Fowzan S. Alkuraya; Andrew H. Crosby; Barbara Triggs-Raine; Barry A. Chioza

Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development.


Epigenomics | 2016

New developments in Silver–Russell syndrome and implications for clinical practice

Miho Ishida

Silver-Russell syndrome is a clinically and genetically heterogeneous disorder, characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. It is one of the imprinting disorders, which results as a consequence of aberrant imprinted gene expressions. Currently, maternal uniparental disomy of chromosome 7 accounts for approximately 10% of Silver-Russell syndrome cases, while ~50% of patients have hypomethylation at imprinting control region 1 at chromosome 11p15.5 locus, leaving ~40% of cases with unknown etiologies. This review aims to provide a comprehensive list of molecular defects in Silver-Russell syndrome reported to date and to highlight the importance of multiple-loci/tissue testing and trio (both parents and proband) screening. The epigenetic and phenotypic overlaps with other imprinting disorders will also be discussed.


The Journal of Clinical Endocrinology and Metabolism | 2018

Genetic Analyses in Small-for-Gestational-Age Newborns

Susanne E. Stalman; Nita Solanky; Miho Ishida; Cristina Alemán-Charlet; Sayeda Abu-Amero; Marielle Alders; Lucas Alvizi; William Baird; Charalambos Demetriou; Peter Henneman; Chela James; Lia Knegt; Lydia J. Leon; Marcel Mannens; Adi N. Mul; Nicole A. Nibbering; Emma Peskett; Faisal I. Rezwan; Carrie Ris-Stalpers; Joris A. M. van der Post; Gerdine A. Kamp; Frans B. Plötz; Jan M. Wit; Philip Stanier; Gudrun E. Moore; Raoul C. M. Hennekam

Context Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. Design A prospective cohort study of subjects with a low birth weight for gestational age. Setting The study was conducted at an academic pediatric research institute. Patients A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Interventions Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. Main Outcome Measures The numbers of CNVs, methylation disturbances, and sequence variants. Results The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Conclusion Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.


Human Mutation | 2017

Maternal mutations of FOXF1 cause Alveolar capillary dysplasia despite not being imprinted

Miguel Alsina Casanova; Ana Monteagudo-Sánchez; Luciana Rodiguez Guerineau; Franck Court; Isabel Gazquez Serrano; Loreto Martorell; Carlota Rovira Zurriaga; Gudrun E. Moore; Miho Ishida; Montserrat Castañón; Elisenda Moliner Calderon; David Monk; Julio Moreno Hernando

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long‐range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full‐term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal‐inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent‐of‐origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.

Collaboration


Dive into the Miho Ishida's collaboration.

Top Co-Authors

Avatar

Gudrun E. Moore

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Philip Stanier

University College London

View shared research outputs
Top Co-Authors

Avatar

Anna Thomas

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estelle Chanudet

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Eugene Healy

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Nj Sebire

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Deborah Morrogh

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Neil W. Bulstrode

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

V.A. Kinsler

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge