Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah R. Winter is active.

Publication


Featured researches published by Deborah R. Winter.


PLOS ONE | 2007

An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets

Deborah R. Winter; Ben Vinegar; Hardeep Nahal; Ron Ammar; Greg Wilson; Nicholas J. Provart

Background The exploration of microarray data and data from other high-throughput projects for hypothesis generation has become a vital aspect of post-genomic research. For the non-bioinformatics specialist, however, many of the currently available tools provide overwhelming amounts of data that are presented in a non-intuitive way. Methodology/Principal Findings In order to facilitate the interpretation and analysis of microarray data and data from other large-scale data sets, we have developed a tool, which we have dubbed the electronic Fluorescent Pictograph – or eFP – Browser, available at http://www.bar.utoronto.ca/, for exploring microarray and other data for hypothesis generation. This eFP Browser engine paints data from large-scale data sets onto pictographic representations of the experimental samples used to generate the data sets. We give examples of using the tool to present Arabidopsis gene expression data from the AtGenExpress Consortium (Arabidopsis eFP Browser), data for subcellular localization of Arabidopsis proteins (Cell eFP Browser), and mouse tissue atlas microarray data (Mouse eFP Browser). Conclusions/Significance The eFP Browser software is easily adaptable to microarray or other large-scale data sets from any organism and thus should prove useful to a wide community for visualizing and interpreting these data sets for hypothesis generation.


Cell | 2014

Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment

Yonit Lavin; Deborah R. Winter; Ronnie Blecher-Gonen; Eyal David; Hadas Keren-Shaul; Miriam Merad; Steffen Jung; Ido Amit

Macrophages are critical for innate immune defense and also control organ homeostasis in a tissue-specific manner. They provide a fitting model to study the impact of ontogeny and microenvironment on chromatin state and whether chromatin modifications contribute to macrophage identity. Here, we profile the dynamics of four histone modifications across seven tissue-resident macrophage populations. We identify 12,743 macrophage-specific enhancers and establish that tissue-resident macrophages have distinct enhancer landscapes beyond what can be explained by developmental origin. Combining our enhancer catalog with gene expression profiles and open chromatin regions, we show that a combination of tissue- and lineage-specific transcription factors form the regulatory networks controlling chromatin specification in tissue-resident macrophages. The environment is capable of shaping the chromatin landscape of transplanted bone marrow precursors, and even differentiated macrophages can be reprogrammed when transferred into a new microenvironment. These results provide a comprehensive view of macrophage regulatory landscape and highlight the importance of the microenvironment, along with pioneer factors in orchestrating identity and plasticity.


Science | 2014

Chromatin state dynamics during blood formation

David Lara-Astiaso; Assaf Weiner; Erika Lorenzo-Vivas; Irina Zaretsky; Diego Jaitin; Eyal David; Hadas Keren-Shaul; Alexander Mildner; Deborah R. Winter; Steffen Jung; Nir Friedman; Ido Amit

Opening and closing blood enhancers As cells develop and differentiate into different types, the shape and accessibility of their DNA can change. Lara-Astiaso et al. studied this phenomenon in blood. They developed a technique that examines a relatively small number of cells to identify the changes that affect DNA during blood development. They found that the DNA of noncoding regions, called enhancers, is set in an open position when cells are undifferentiated and able to take on a variety of roles and gradually closes as cells mature into their final forms. Science, this issue p. 943 A chromatin precipitation technique identifies changes during the differentiation of blood cells. Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development.


Cell | 2015

Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

Franziska Paul; Ya’ara Arkin; Amir Giladi; Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Deborah R. Winter; David Lara-Astiaso; Meital Gury; Assaf Weiner; Eyal David; Nadav Cohen; Felicia Kathrine Bratt Lauridsen; Simon Haas; Andreas Schlitzer; Alexander Mildner; Florent Ginhoux; Steffen Jung; Andreas Trumpp; Bo T. Porse; Amos Tanay; Ido Amit

Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.


Science | 2016

Microglia development follows a stepwise program to regulate brain homeostasis.

Orit Matcovitch-Natan; Deborah R. Winter; Amir Giladi; Stephanie Vargas Aguilar; Amit Spinrad; Sandrine Sarrazin; Hila Ben-Yehuda; Eyal David; Fabiola Zelada González; Pierre Perrin; Hadas Keren-Shaul; Meital Gury; David Lara-Astaiso; Christoph A. Thaiss; Merav Cohen; Keren Bahar Halpern; Kuti Baruch; Aleksandra Deczkowska; Erika Lorenzo-Vivas; Shalev Itzkovitz; Eran Elinav; Michael H. Sieweke; Michal Schwartz; Ido Amit

Microglia development follows a stepwise program Microglia are cells that defend the central nervous system. However, because they migrate into the brain during development, the changes that they undergo, including those that affect gene expression, have been difficult to document. Matcovitch-Natan et al. transcriptionally profiled gene expression and analyzed epigenetic signatures of microglia at the single-cell level in the early postnatal life of mice. They identified three stages of microglia development, which are characterized by gene expression and linked with chromatin changes, occurring in sync with the developing brain. Furthermore, they showed that the proper development of microglia is affected by the microbiome. Science, this issue p. 789 The microbiota help regulate the development of active immune defense in the central nervous system of mice. INTRODUCTION Microglia, as the resident myeloid cells of the central nervous system, play an important role in life-long brain maintenance and in pathology. Microglia are derived from erythromyeloid progenitors that migrate to the brain starting at embryonic day 8.5 and continuing until the blood-brain barrier is formed; after this, self-renewal is the only source of new microglia in the healthy brain. As the brain develops, microglia must perform different functions to accommodate temporally changing needs: first, actively engaging in synapse pruning and neurogenesis, and later, maintaining homeostasis. Although the interactions of microglia with the brain environment at steady state and in response to immune challenges have been well studied, their dynamics during development have not been fully elucidated. RATIONALE We systematically studied the transcriptional and epigenomic regulation of microglia throughout brain development to decipher the dynamics of the chromatin state and gene networks governing the transformation from yolk sac progenitor to adult microglia. We used environmental and genetic perturbation models to investigate how timed disruptions to microglia impact their natural development. RESULTS Global profiles of transcriptional states indicated that microglia development proceeds through three distinct temporal stages, which we define as early microglia (until embryonic day 14), pre-microglia (from embryonic day 14 to a few weeks after birth), and adult microglia (from a few weeks after birth onward). ATAC-seq (assay for transposase-accessible chromatin followed by sequencing) for chromatin accessibility and ChIP-seq (chromatin immunoprecipitation followed by sequencing) for histone modifications further characterized the differential regulatory elements in each developmental phase. Single-cell transcriptome analysis revealed minor mixing of the gene expression programs across phases, suggesting that individual cells shift their regulatory networks during development in a coordinated manner. Specific markers and regulatory factors distinguish each phase: For example, we identified MAFB as an important transcription factor of the adult microglia program. Microglia-specific knockout of MafB led to disruption of homeostasis in adulthood and increased expression of interferon and inflammation pathways. We found that microglia from germ-free mice exhibited dysregulation of dozens of genes associated with the adult phase and immune response. In addition, maternal immune activation, which has been linked to behavioral disorders in adult offspring, had the greatest impact on pre-microglia, resulting in a transcriptional shift toward the more advanced developmental stage. CONCLUSION Our work identifies a stepwise developmental program of microglia in synchrony with the developing brain. Each stage of microglia development has evolved distinct pathways for processing the relevant signals from the environment to balance their time-dependent role in neurogenesis with regulation of immune responses that may cause collateral damage. Genetic or environmental perturbations of these pathways can disrupt stage-specific functions of microglia and lead to loss of brain homeostasis, which may be associated with neurodevelopmental disorders. Microglia development proceeds in a stepwise manner. Microglia were isolated from mice throughout development from embryo to adult. Data from population-level RNA-seq, ChIP-seq, and ATAC-seq, as well as single-cell RNA-seq, show that microglia development proceeds through three distinct stages—early, pre-, and adult— with characteristic gene expression and functional states. Perturbations of this developmental process, such as from MafB knockout, lead to disrupted brain homeostasis by the dysregulation of adult and inflammatory genes. Tn5, transposase 5. Microglia, the resident myeloid cells of the central nervous system, play important roles in life-long brain maintenance and in pathology. Despite their importance, their regulatory dynamics during brain development have not been fully elucidated. Using genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development, we found that microglia undergo three temporal stages of development in synchrony with the brain—early, pre-, and adult microglia—which are under distinct regulatory circuits. Knockout of the gene encoding the adult microglia transcription factor MAFB and environmental perturbations, such as those affecting the microbiome or prenatal immune activation, led to disruption of developmental genes and immune response pathways. Together, our work identifies a stepwise microglia developmental program integrating immune response pathways that may be associated with several neurodevelopmental disorders.


Nature Immunology | 2016

The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis

Ido Amit; Deborah R. Winter; Steffen Jung

Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.


Cell | 2016

Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations

Christoph A. Thaiss; Maayan Levy; Tal Korem; Lenka Dohnalová; Hagit Shapiro; Diego Jaitin; Eyal David; Deborah R. Winter; Meital Gury-BenAri; Evgeny Tatirovsky; Timur Tuganbaev; Sara Federici; Niv Zmora; David Zeevi; Mally Dori-Bachash; Meirav Pevsner-Fischer; Elena Kartvelishvily; Alexander Brandis; Alon Harmelin; Oren Shibolet; Zamir Halpern; Kenya Honda; Ido Amit; Eran Segal; Eran Elinav

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.


PLOS Genetics | 2011

Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level.

Elizabeth Rach; Deborah R. Winter; Ashlee M. Benjamin; David L. Corcoran; Ting Ni; Jun Zhu; Uwe Ohler

The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.


Immunity | 2015

Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes.

Tal Capucha; Gabriel Mizraji; Hadas Segev; Ronnie Blecher-Gonen; Deborah R. Winter; Abed Khalaileh; Yaara Tabib; Tsipora Attal; Maria Nassar; Katya Zelentsova; Hen Kisos; Martin Zenke; Kristin Seré; Thomas Hieronymus; Tal Burstyn-Cohen; Ido Amit; Asaf Wilensky; Avi-Hai Hovav

Langerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. We found that, in contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103(+)CD11b(lo) (CD103(+)) and CD11b(+)CD103(-) (CD11b(+)) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103(+) LCs originate from pre-DCs, whereas CD11b(+) LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, the transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with the epithelial position, morphology, and expression of the LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DC, and monocytic) in steady state.


Nature Biotechnology | 2016

Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution

Assaf Weiner; David Lara-Astiaso; Vladislav Krupalnik; Ohad Gafni; Eyal David; Deborah R. Winter; Jacob Hanna; Ido Amit

Histone modifications play an important role in chromatin organization and transcriptional regulation, but despite the large amount of genome-wide histone modification data collected in different cells and tissues, little is known about co-occurrence of modifications on the same nucleosome. Here we present a genome-wide quantitative method for combinatorial indexed chromatin immunoprecipitation (co-ChIP) to characterize co-occurrence of histone modifications on nucleosomes. Using co-ChIP, we study the genome-wide co-occurrence of 14 chromatin marks (70 pairwise combinations), and find previously undescribed co-occurrence patterns, including the co-occurrence of H3K9me1 and H3K27ac in super-enhancers. Finally, we apply co-ChIP to measure the distribution of the bivalent H3K4me3–H3K27me3 domains in two distinct mouse embryonic stem cell (mESC) states and in four adult tissues. We observe dynamic changes in 5,786 regions and discover both loss and de novo gain of bivalency in key tissue-specific regulatory genes, suggesting a functional role for bivalent domains during different stages of development. These results show that co-ChIP can reveal the complex interactions between histone modifications.

Collaboration


Dive into the Deborah R. Winter's collaboration.

Top Co-Authors

Avatar

Ido Amit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eyal David

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hadas Keren-Shaul

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Assaf Weiner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

David Lara-Astiaso

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Diego Jaitin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir Giladi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alexander Mildner

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge