Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hadas Keren-Shaul is active.

Publication


Featured researches published by Hadas Keren-Shaul.


Cell | 2014

Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment

Yonit Lavin; Deborah R. Winter; Ronnie Blecher-Gonen; Eyal David; Hadas Keren-Shaul; Miriam Merad; Steffen Jung; Ido Amit

Macrophages are critical for innate immune defense and also control organ homeostasis in a tissue-specific manner. They provide a fitting model to study the impact of ontogeny and microenvironment on chromatin state and whether chromatin modifications contribute to macrophage identity. Here, we profile the dynamics of four histone modifications across seven tissue-resident macrophage populations. We identify 12,743 macrophage-specific enhancers and establish that tissue-resident macrophages have distinct enhancer landscapes beyond what can be explained by developmental origin. Combining our enhancer catalog with gene expression profiles and open chromatin regions, we show that a combination of tissue- and lineage-specific transcription factors form the regulatory networks controlling chromatin specification in tissue-resident macrophages. The environment is capable of shaping the chromatin landscape of transplanted bone marrow precursors, and even differentiated macrophages can be reprogrammed when transferred into a new microenvironment. These results provide a comprehensive view of macrophage regulatory landscape and highlight the importance of the microenvironment, along with pioneer factors in orchestrating identity and plasticity.


Science | 2014

Massively parallel single cell RNA-Seq for marker-free decomposition of tissues into cell types

Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Naama Elefant; Franziska Paul; Irina Zaretsky; Alexander Mildner; Nadav Cohen; Steffen Jung; Amos Tanay; Ido Amit

Sequencing of RNA from thousands of individual immune cells allows unbiased identification of cellular subtypes. In multicellular organisms, biological function emerges when heterogeneous cell types form complex organs. Nevertheless, dissection of tissues into mixtures of cellular subpopulations is currently challenging. We introduce an automated massively parallel single-cell RNA sequencing (RNA-seq) approach for analyzing in vivo transcriptional states in thousands of single cells. Combined with unsupervised classification algorithms, this facilitates ab initio cell-type characterization of splenic tissues. Modeling single-cell transcriptional states in dendritic cells and additional hematopoietic cell types uncovers rich cell-type heterogeneity and gene-modules activity in steady state and after pathogen activation. Cellular diversity is thereby approached through inference of variable and dynamic pathway activity rather than a fixed preprogrammed cell-type hierarchy. These data demonstrate single-cell RNA-seq as an effective tool for comprehensive cellular decomposition of complex tissues. Introducing MARS-Seq Immune cells are typically differentiated by surface markers; however, this designation is somewhat crude and does not allow for fine distinctions that might be characterized by their RNA transcripts. Jaitin et al. (p. 776) used massively parallel single-cell RNA-sequencing (MARS-Seq) analysis to explore cellular heterogeneity within the immune system by assembling an automated experimental platform that enables RNA profiling of cells sorted from tissues using flow cytometry. More than 1000 cells could be sequenced, and unsupervised clustering analysis of the RNA profiles revealed distinct cellular groupings that corresponded to B cells, macrophages, and dendritic cells. This approach provides the ability to perform a bottom-up characterization of in vivo cell-type landscapes independent of cell markers or prior knowledge.


Nature Neuroscience | 2015

Host microbiota constantly control maturation and function of microglia in the CNS

Daniel Erny; Anna Lena Hrabě de Angelis; Diego Jaitin; Peter Wieghofer; Ori Staszewski; Eyal David; Hadas Keren-Shaul; Tanel Mahlakõiv; Kristin Jakobshagen; Thorsten Buch; Vera Schwierzeck; Olaf Utermöhlen; Eunyoung Chun; Wendy S. Garrett; Kathy D. McCoy; Andreas Diefenbach; Peter Staeheli; Bärbel Stecher; Ido Amit; Marco Prinz

As the tissue macrophages of the CNS, microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. We observed substantial contributions of the host microbiota to microglia homeostasis, as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype, leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings suggest that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be rectified to some extent by complex microbiota.


Science | 2014

Chromatin state dynamics during blood formation

David Lara-Astiaso; Assaf Weiner; Erika Lorenzo-Vivas; Irina Zaretsky; Diego Jaitin; Eyal David; Hadas Keren-Shaul; Alexander Mildner; Deborah R. Winter; Steffen Jung; Nir Friedman; Ido Amit

Opening and closing blood enhancers As cells develop and differentiate into different types, the shape and accessibility of their DNA can change. Lara-Astiaso et al. studied this phenomenon in blood. They developed a technique that examines a relatively small number of cells to identify the changes that affect DNA during blood development. They found that the DNA of noncoding regions, called enhancers, is set in an open position when cells are undifferentiated and able to take on a variety of roles and gradually closes as cells mature into their final forms. Science, this issue p. 943 A chromatin precipitation technique identifies changes during the differentiation of blood cells. Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development.


Cell | 2015

Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

Franziska Paul; Ya’ara Arkin; Amir Giladi; Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Deborah R. Winter; David Lara-Astiaso; Meital Gury; Assaf Weiner; Eyal David; Nadav Cohen; Felicia Kathrine Bratt Lauridsen; Simon Haas; Andreas Schlitzer; Alexander Mildner; Florent Ginhoux; Steffen Jung; Andreas Trumpp; Bo T. Porse; Amos Tanay; Ido Amit

Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.


Cell | 2017

A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease

Hadas Keren-Shaul; Amit Spinrad; Assaf Weiner; Orit Matcovitch-Natan; Raz Dvir-Szternfeld; Tyler K. Ulland; Eyal David; Kuti Baruch; David Lara-Astaiso; Beáta Tóth; Shalev Itzkovitz; Marco Colonna; Michal Schwartz; Ido Amit

Alzheimers disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)-/- Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.


Science | 2016

Microglia development follows a stepwise program to regulate brain homeostasis.

Orit Matcovitch-Natan; Deborah R. Winter; Amir Giladi; Stephanie Vargas Aguilar; Amit Spinrad; Sandrine Sarrazin; Hila Ben-Yehuda; Eyal David; Fabiola Zelada González; Pierre Perrin; Hadas Keren-Shaul; Meital Gury; David Lara-Astaiso; Christoph A. Thaiss; Merav Cohen; Keren Bahar Halpern; Kuti Baruch; Aleksandra Deczkowska; Erika Lorenzo-Vivas; Shalev Itzkovitz; Eran Elinav; Michael H. Sieweke; Michal Schwartz; Ido Amit

Microglia development follows a stepwise program Microglia are cells that defend the central nervous system. However, because they migrate into the brain during development, the changes that they undergo, including those that affect gene expression, have been difficult to document. Matcovitch-Natan et al. transcriptionally profiled gene expression and analyzed epigenetic signatures of microglia at the single-cell level in the early postnatal life of mice. They identified three stages of microglia development, which are characterized by gene expression and linked with chromatin changes, occurring in sync with the developing brain. Furthermore, they showed that the proper development of microglia is affected by the microbiome. Science, this issue p. 789 The microbiota help regulate the development of active immune defense in the central nervous system of mice. INTRODUCTION Microglia, as the resident myeloid cells of the central nervous system, play an important role in life-long brain maintenance and in pathology. Microglia are derived from erythromyeloid progenitors that migrate to the brain starting at embryonic day 8.5 and continuing until the blood-brain barrier is formed; after this, self-renewal is the only source of new microglia in the healthy brain. As the brain develops, microglia must perform different functions to accommodate temporally changing needs: first, actively engaging in synapse pruning and neurogenesis, and later, maintaining homeostasis. Although the interactions of microglia with the brain environment at steady state and in response to immune challenges have been well studied, their dynamics during development have not been fully elucidated. RATIONALE We systematically studied the transcriptional and epigenomic regulation of microglia throughout brain development to decipher the dynamics of the chromatin state and gene networks governing the transformation from yolk sac progenitor to adult microglia. We used environmental and genetic perturbation models to investigate how timed disruptions to microglia impact their natural development. RESULTS Global profiles of transcriptional states indicated that microglia development proceeds through three distinct temporal stages, which we define as early microglia (until embryonic day 14), pre-microglia (from embryonic day 14 to a few weeks after birth), and adult microglia (from a few weeks after birth onward). ATAC-seq (assay for transposase-accessible chromatin followed by sequencing) for chromatin accessibility and ChIP-seq (chromatin immunoprecipitation followed by sequencing) for histone modifications further characterized the differential regulatory elements in each developmental phase. Single-cell transcriptome analysis revealed minor mixing of the gene expression programs across phases, suggesting that individual cells shift their regulatory networks during development in a coordinated manner. Specific markers and regulatory factors distinguish each phase: For example, we identified MAFB as an important transcription factor of the adult microglia program. Microglia-specific knockout of MafB led to disruption of homeostasis in adulthood and increased expression of interferon and inflammation pathways. We found that microglia from germ-free mice exhibited dysregulation of dozens of genes associated with the adult phase and immune response. In addition, maternal immune activation, which has been linked to behavioral disorders in adult offspring, had the greatest impact on pre-microglia, resulting in a transcriptional shift toward the more advanced developmental stage. CONCLUSION Our work identifies a stepwise developmental program of microglia in synchrony with the developing brain. Each stage of microglia development has evolved distinct pathways for processing the relevant signals from the environment to balance their time-dependent role in neurogenesis with regulation of immune responses that may cause collateral damage. Genetic or environmental perturbations of these pathways can disrupt stage-specific functions of microglia and lead to loss of brain homeostasis, which may be associated with neurodevelopmental disorders. Microglia development proceeds in a stepwise manner. Microglia were isolated from mice throughout development from embryo to adult. Data from population-level RNA-seq, ChIP-seq, and ATAC-seq, as well as single-cell RNA-seq, show that microglia development proceeds through three distinct stages—early, pre-, and adult— with characteristic gene expression and functional states. Perturbations of this developmental process, such as from MafB knockout, lead to disrupted brain homeostasis by the dysregulation of adult and inflammatory genes. Tn5, transposase 5. Microglia, the resident myeloid cells of the central nervous system, play important roles in life-long brain maintenance and in pathology. Despite their importance, their regulatory dynamics during brain development have not been fully elucidated. Using genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development, we found that microglia undergo three temporal stages of development in synchrony with the brain—early, pre-, and adult microglia—which are under distinct regulatory circuits. Knockout of the gene encoding the adult microglia transcription factor MAFB and environmental perturbations, such as those affecting the microbiome or prenatal immune activation, led to disruption of developmental genes and immune response pathways. Together, our work identifies a stepwise microglia developmental program integrating immune response pathways that may be associated with several neurodevelopmental disorders.


The EMBO Journal | 2014

Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7‐dependent manner

Merav Cohen; Orit Matcovitch; Eyal David; Zohar Barnett-Itzhaki; Hadas Keren-Shaul; Ronnie Blecher-Gonen; Diego Jaitin; Antonio Sica; Ido Amit; Michal Schwartz

Tissue microenvironment influences the function of resident and infiltrating myeloid‐derived cells. In the central nervous system (CNS), resident microglia and freshly recruited infiltrating monocyte‐derived macrophages (mo‐MΦ) display distinct activities under pathological conditions, yet little is known about the microenvironment‐derived molecular mechanism that regulates these differences. Here, we demonstrate that long exposure to transforming growth factor‐β1 (TGFβ1) impaired the ability of myeloid cells to acquire a resolving anti‐inflammatory phenotype. Using genome‐wide expression analysis and chromatin immunoprecipitation followed by next‐generation sequencing, we show that the capacity to undergo pro‐ to anti‐inflammatory (M1‐to‐M2) phenotype switch is controlled by the transcription factor interferon regulatory factor 7 (IRF7) that is down‐regulated by the TGFβ1 pathway. RNAi‐mediated perturbation of Irf7 inhibited the M1‐to‐M2 switch, while IFNβ1 (an IRF7 pathway activator) restored it. In vivo induction of Irf7 expression in microglia, following spinal cord injury, reduced their pro‐inflammatory activity. These results highlight the key role of tissue‐specific environmental factors in determining the fate of resident myeloid‐derived cells under both physiological and pathological conditions.


Molecular Systems Biology | 2014

Digital cell quantification identifies global immune cell dynamics during influenza infection

Zeev Altboum; Yael Steuerman; Eyal David; Zohar Barnett-Itzhaki; Liran Valadarsky; Hadas Keren-Shaul; Tal Meningher; Ella Mendelson; Michal Mandelboim; Irit Gat-Viks; Ido Amit

Hundreds of immune cell types work in coordination to maintain tissue homeostasis. Upon infection, dramatic changes occur with the localization, migration, and proliferation of the immune cells to first alert the body of the danger, confine it to limit spreading, and finally extinguish the threat and bring the tissue back to homeostasis. Since current technologies can follow the dynamics of only a limited number of cell types, we have yet to grasp the full complexity of global in vivo cell dynamics in normal developmental processes and disease. Here, we devise a computational method, digital cell quantification (DCQ), which combines genome‐wide gene expression data with an immune cell compendium to infer in vivo changes in the quantities of 213 immune cell subpopulations. DCQ was applied to study global immune cell dynamics in mice lungs at ten time points during 7 days of flu infection. We find dramatic changes in quantities of 70 immune cell types, including various innate, adaptive, and progenitor immune cells. We focus on the previously unreported dynamics of four immune dendritic cell subtypes and suggest a specific role for CD103+ CD11b− DCs in early stages of disease and CD8+ pDC in late stages of flu infection.


Seminars in Immunology | 2015

Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

Diego Jaitin; Hadas Keren-Shaul; Naama Elefant; Ido Amit

Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases.

Collaboration


Dive into the Hadas Keren-Shaul's collaboration.

Top Co-Authors

Avatar

Ido Amit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eyal David

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Diego Jaitin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Assaf Weiner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Deborah R. Winter

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Amos Tanay

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alexander Mildner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David Lara-Astiaso

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michal Schwartz

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge