Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei Wei Prior is active.

Publication


Featured researches published by Wei Wei Prior.


Journal of Cell Biology | 2008

Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents

Michael Degtyarev; Ann De Mazière; Christine Orr; Jie Lin; Brian Lee; Janet Tien; Wei Wei Prior; Suzanne van Dijk; Hong Wu; Daniel C. Gray; David P. Davis; Howard M. Stern; Lesley J. Murray; Klaus P. Hoeflich; Judith Klumperman; Lori S. Friedman; Kui Lin

Although Akt is known as a survival kinase, inhibitors of the phosphatidylinositol 3-kinase (PI3K)–Akt pathway do not always induce substantial apoptosis. We show that silencing Akt1 alone, or any combination of Akt isoforms, can suppress the growth of tumors established from phosphatase and tensin homologue–null human cancer cells. Although these findings indicate that Akt is essential for tumor maintenance, most tumors eventually rebound. Akt knockdown or inactivation with small molecule inhibitors did not induce significant apoptosis but rather markedly increased autophagy. Further treatment with the lysosomotropic agent chloroquine caused accumulation of abnormal autophagolysosomes and reactive oxygen species, leading to accelerated cell death in vitro and complete tumor remission in vivo. Cell death was also promoted when Akt inhibition was combined with the vacuolar H+–adenosine triphosphatase inhibitor bafilomycin A1 or with cathepsin inhibition. These results suggest that blocking lysosomal degradation can be detrimental to cancer cell survival when autophagy is activated, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PI3K–Akt pathway inhibition.


Clinical Cancer Research | 2010

Predictive Biomarkers of Sensitivity to the Phosphatidylinositol 3′ Kinase Inhibitor GDC-0941 in Breast Cancer Preclinical Models

Carol O'Brien; Jeffrey Wallin; Deepak Sampath; Debraj GuhaThakurta; Heidi Savage; Elizabeth Punnoose; Jane Guan; Leanne Berry; Wei Wei Prior; Lukas C. Amler; Marcia Belvin; Lori Friedman; Mark R. Lackner

Purpose: The class I phosphatidylinositol 3′ kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. Experimental Design: We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. Results: We found that models harboring mutations in PIK3CA, amplification of human epidermal growth factor receptor 2, or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity, suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941, and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. Conclusion: Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor. Clin Cancer Res; 16(14); 3670–83. ©2010 AACR.


Molecular Cancer Therapeutics | 2011

GDC-0980 Is a Novel Class I PI3K/mTOR Kinase Inhibitor with Robust Activity in Cancer Models Driven by the PI3K Pathway

Jeffrey Wallin; Kyle A. Edgar; Jane Guan; Megan Berry; Wei Wei Prior; Leslie Lee; John D. Lesnick; Cristina Lewis; Jim Nonomiya; Jodie Pang; Laurent Salphati; Alan G. Olivero; Daniel P. Sutherlin; Carol O'Brien; Jill M. Spoerke; Sonal Patel; Letitia Lensun; Robert Kassees; Leanne Ross; Mark R. Lackner; Deepak Sampath; Marcia Belvin; Lori Friedman

Alterations of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway occur broadly in cancer via multiple mechanisms including mutation of the PIK3CA gene, loss or mutation of phosphatase and tensin homolog (PTEN), and deregulation of mammalian target of rapamycin (mTOR) complexes. The dysregulation of this pathway has been implicated in tumor initiation, cell growth and survival, invasion and angiogenesis, thus, PI3K and mTOR are promising therapeutic targets for cancer. We discovered GDC-0980, a selective, potent, orally bioavailable inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2) with excellent pharmacokinetic and pharmaceutical properties. GDC-0980 potently inhibits signal transduction downstream of both PI3K and mTOR, as measured by pharmacodynamic (PD) biomarkers, thereby acting upon two key pathway nodes to produce the strongest attainable inhibition of signaling in the pathway. Correspondingly, GDC-0980 was potent across a broad panel of cancer cell lines, with the greatest potency in breast, prostate, and lung cancers and less activity in melanoma and pancreatic cancers, consistent with KRAS and BRAF acting as resistance markers. Treatment of cancer cell lines with GDC-0980 resulted in G1 cell-cycle arrest, and in contrast to mTOR inhibitors, GDC-0980 induced apoptosis in certain cancer cell lines, including those with direct pathway activation via PI3K and PTEN. Low doses of GDC-0980 potently inhibited tumor growth in xenograft models including those with activated PI3K, loss of LKB1 or PTEN, and elicited an exposure-related decrease in PD biomarkers. These preclinical data show that GDC-0980 is a potent and effective dual PI3K/mTOR inhibitor with promise for the clinic. Mol Cancer Ther; 10(12); 2426–36. ©2011 AACR.


Journal of Medicinal Chemistry | 2011

Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer.

Daniel P. Sutherlin; Linda Bao; Megan Berry; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Dzh Folks; Lori S. Friedman; Richard Goldsmith; Janet Gunzner; Timothy P. Heffron; John Lesnick; Cristina Lewis; Simon Mathieu; Jeremy Murray; Jim Nonomiya; Jodie Pang; Niel Pegg; Wei Wei Prior; Lionel Rouge; Laurent Salphati; Deepak Sampath; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Binqing Wei; Christian Wiesmann; Ping Wu; Bing-Yan Zhu

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer.


Journal of Medicinal Chemistry | 2010

Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer.

Daniel P. Sutherlin; Deepak Sampath; Megan Berry; Georgette Castanedo; Zhigang Chang; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori Friedman; Richard Goldsmith; Tim Heffron; Leslie Lee; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; Wei Wei Prior; Laurent Salphati; Steve Sideris; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Susan Wong; Bing-Yan Zhu

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1. The addition of a single methyl group to the optimized 5 resulted in 21, which had significantly reduced potency for mTOR. The lead compounds 5 (GNE-493) and 21 (GNE-490) have good pharmacokinetic (PK) parameters, are highly selective, demonstrate knock down of pathway markers in vivo, and are efficacious in xenograft models where the PI3K pathway is deregulated. Both compounds were compared in a PI3K alpha mutated MCF7.1 xenograft model and were found to have equivalent efficacy when normalized for exposure.


Cancer Research | 2010

Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors.

Kyle A. Edgar; Jeffrey Wallin; Megan Berry; Leslie Lee; Wei Wei Prior; Deepak Sampath; Lori Friedman; Marcia Belvin

Therapeutic inhibitors are being developed against the phosphoinositide 3-kinase (PI3K) pathway, the deregulation of which drives tumor growth and survival in many cancers. There are eight PI3Ks in mammals divided into three classes. Class IA PI3Ks (p110alpha, p110beta, and p110delta) are critical for cell growth and survival, with the p110alpha isoform implicated as the most important in carcinomas. In this study, we examined the effects of small-molecule inhibitors of class IA PI3Ks to explore the contributions of different isoforms in cancer cells. Similar responses were seen in cancer cells with wild-type or activated mutant PI3K genes treated with p110alpha/delta or p110alpha/beta/delta inhibitors in cell viability assays. In contrast, PTEN-negative cell lines tended to be less responsive (4-fold overall) to an inhibitor of p110alpha/delta versus p110alpha/beta/delta. Combining a p110alpha/delta inhibitor with a p110beta inhibitor resulted in comparable potency to the p110alpha/beta/delta inhibitor. The disparity in efficacy was confirmed in vivo. Pharmacodynamic biomarker analysis revealed that an inhibitor with insufficient potency against the p110beta isoform was less effective at inhibiting the PI3K pathway in PTEN-negative tumor xenografts. Our results imply that patients with PTEN-negative tumors may preferentially benefit from treatment with a class I PI3K inhibitor that is capable of inhibiting the p110beta isoform.


Journal of Medicinal Chemistry | 2013

Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1H-1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity

Chudi Ndubaku; Timothy P. Heffron; Steven Staben; Matthew Baumgardner; Nicole Blaquiere; Erin K. Bradley; Richard James Bull; Steven Do; Jennafer Dotson; Danette Dudley; Kyle A. Edgar; Lori Friedman; Richard Goldsmith; Robert Heald; Aleksandr Kolesnikov; Leslie Lee; Cristina Lewis; Michelle Nannini; Jim Nonomiya; Jodie Pang; Steve Price; Wei Wei Prior; Laurent Salphati; Steve Sideris; Jeffery J. Wallin; Lan Wang; Binqing Wei; Deepak Sampath; Alan G. Olivero

Dysfunctional signaling through the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway leads to uncontrolled tumor proliferation. In the course of the discovery of novel benzoxepin PI3K inhibitors, we observed a strong dependency of in vivo antitumor activity on the free-drug exposure. By lowering the intrinsic clearance, we derived a set of imidazobenzoxazepin compounds that showed improved unbound drug exposure and effectively suppressed growth of tumors in a mouse xenograft model at low drug dose levels. One of these compounds, GDC-0032 (11l), was progressed to clinical trials and is currently under phase I evaluation as a potential treatment for human malignancies.


Drug Metabolism and Disposition | 2010

Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Inhibition and Biomarker Modulation by the Novel Phosphatidylinositol 3-Kinase Inhibitor GDC-0941

Laurent Salphati; Harvey Wong; Marcia Belvin; Delia Bradford; Kyle A. Edgar; Wei Wei Prior; Deepak Sampath; Jeffrey Wallin

The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation, by activation or transforming mutations of the p110α subunit, is associated with the development of many cancers. 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of PI3K currently being evaluated in the clinic as an anticancer agent. The objectives of these studies were to characterize the relationships between GDC-0941 plasma concentrations and tumor reduction in MCF7.1 breast cancer xenografts and to evaluate the association between the tumor pharmacodynamic biomarker [phosphorylated (p) Akt and phosphorylated proline-rich Akt substrate of 40 kDa (pPRAS40)] responses and antitumor efficacy. MCF7.1 tumor-bearing mice were treated for up to 3 weeks with GDC-0941 at various doses (12.5–200 mg/kg) and dosing schedules (daily to weekly). An indirect response model fitted to tumor growth data indicated that the GDC-0941 plasma concentration required for tumor stasis was approximately 0.3 μM. The relationship between GDC-0941 plasma concentrations and inhibition of pAkt and pPRAS40 in tumor was also investigated after a single oral dose of 12.5, 50, or 150 mg/kg. An indirect response model was fitted to the inhibition of Akt and PRAS40 phosphorylation data and provided IC50 estimates of 0.36 and 0.29 μM for pAkt and pPRAS40, respectively. The relationship between pAkt inhibition and tumor volume was further explored using an integrated pharmacokinetic biomarker tumor growth model, which showed that a pAkt inhibition of at least 30% was required to achieve stasis after GDC-0941 treatment of the MCF7.1 xenograft.


Clinical Cancer Research | 2012

GDC-0941, a Novel Class I Selective PI3K Inhibitor, Enhances the Efficacy of Docetaxel in Human Breast Cancer Models by Increasing Cell Death In Vitro and In Vivo

Jeffrey Wallin; Jane Guan; Wei Wei Prior; Leslie Lee; Leanne Berry; Lisa D. Belmont; Hartmut Koeppen; Marcia Belvin; Lori Friedman; Deepak Sampath

Purpose: Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo. Experimental Design: A panel of 25 breast tumor cell lines representing HER2+, luminal, and basal subtypes were treated with GDC-0941, docetaxel, or the combination of both drugs and assayed for cellular viability, modulation of PI3K pathway markers, and apoptosis induction. Drug combination effects on cellular viability were also assessed in nontransformed MCF10A human mammary epithelial cells. Human xenografts of breast cancer cell lines and patient-derived tumors were used to assess efficacy of GDC-0941 and docetaxel in vivo. Results: Combination of GDC-0941 and docetaxel decreased the cellular viability of breast tumor cell lines in vitro but to variable degrees of drug synergy. Compared with nontransformed MCF10A cells, the addition of both drugs resulted in stronger synergistic effects in a subset of tumor cell lines that were not predicted by breast cancer subtype. In xenograft models, GDC-0941 enhanced the antitumor activity of docetaxel with maximum combination efficacy observed within 1 hour of administering both drugs. GDC-0941 increased the rate of apoptosis in cells arrested in mitosis upon cotreatment with docetaxel. Conclusion: GDC-0941 augments the efficacy of docetaxel by increasing drug-induced apoptosis in breast cancer models. Clin Cancer Res; 18(14); 3901–11. ©2012 AACR.


Science Translational Medicine | 2010

Nuclear Phospho-Akt Increase Predicts Synergy of PI3K Inhibition and Doxorubicin in Breast and Ovarian Cancer

Jeffrey Wallin; Jane Guan; Wei Wei Prior; Kyle A. Edgar; Robert Kassees; Deepak Sampath; Marcia Belvin; Lori Friedman

Akt phosphorylation in response to DNA damage predicts the sensitivity of cancer cells to combinations of a PI3K inhibitor and the replication inhibitor doxorubicin. Timing the Delivery of a One-Two Punch How to effectively target and eradicate lingering cancer cells that evade surgical, radiological, or even chemotherapeutic treatments remains one of the most confounding questions in cancer biology. Although complex mechanisms underlie the etiology and inherent heterogeneity of the disease, the manipulation of growth signaling pathways offers several avenues for efficient intervention. In many cancers, a key growth pathway—the phosphatidylinositol 3-kinase (PI3K) pathway—can be activated at one or several points, encouraging efforts to inhibit critical proteins. Yet, cancer cells are smart; they reach out and evolve new ways of resisting such setbacks, turning on new pathways or alternate effector proteins to achieve the same result: incessant growth. Now, Wallin and colleagues have taken aim at this pathway in a large panel of breast and ovarian cancer cell lines by investigating the combinatorial effects of PI3K pathway inhibitors and DNA damage inflicted with a common chemotherapeutic agent, doxorubicin. When the authors probed the basis of the cell lines’ susceptibility to growth inhibition in the presence of one or both drugs, they found that activation of a master serine-threonine kinase, Akt, by phosphorylation was higher in cancer lines that benefited from the drugs in combination, irrespective of PI3K pathway activation status or p53 mutational status. Similar experiments in mice carrying tumors recapitulated these findings and, importantly, the drug combination did not elevate Akt phosphorylation in nontumor tissues. Together, these findings suggest that the activation of Akt in tumor tissues may mark the vulnerability of a cancer to combination therapy with a PI3K inhibitor and a DNA-damaging agent. This proposal will need to be explored further in the clinic, but the utility of tandem drug treatments shown here offers hope for curbing this class of cancers. The phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway is frequently disrupted in cancer and implicated in multiple aspects of tumor growth and survival. In addition, increased activity of this pathway in cancer is associated with resistance to chemotherapeutic agents. Therefore, it has been hypothesized that PI3K inhibitors could help to overcome resistance to chemotherapies. We used preclinical cancer models to determine the effects of combining the DNA-damaging drug doxorubicin with GDC-0941, a class I PI3K inhibitor that is currently being tested in early-stage clinical trials. We found that PI3K inhibition significantly increased apoptosis and enhanced the antitumor effects of doxorubicin in a defined set of breast and ovarian cancer models. Doxorubicin treatment caused an increase in the amount of nuclear phospho-AktSer473 in cancer cells that rely on the PI3K pathway for survival. This increased phospho-AktSer473 response to doxorubicin correlates with the strength of GDC-0941’s effect to augment doxorubicin action. These studies predict that clinical use of combination therapies with GDC-0941 in addition to DNA-damaging agents will be effective in tumors that rely on the PI3K pathway for survival.

Collaboration


Dive into the Wei Wei Prior's collaboration.

Researchain Logo
Decentralizing Knowledge