Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine Mérino is active.

Publication


Featured researches published by Delphine Mérino.


Molecular and Cellular Biology | 2006

Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.

Delphine Mérino; Najoua Lalaoui; Alexandre Morizot; Pascal Schneider; Eric Solary; Olivier Micheau

ABSTRACT Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.


Cancer Cell | 2013

Targeting BCL-2 with the BH3 Mimetic ABT-199 in Estrogen Receptor-Positive Breast Cancer

François Vaillant; Delphine Mérino; Lily Lee; Kelsey Breslin; Bhupinder Pal; Matthew E. Ritchie; Gordon K. Smyth; Michael Christie; Louisa Phillipson; Christopher J. Burns; G. Bruce Mann; Jane E. Visvader; Geoffrey J. Lindeman

The prosurvival protein BCL-2 is frequently overexpressed in estrogen receptor (ER)-positive breast cancer. We have generated ER-positive primary breast tumor xenografts that recapitulate the primary tumors and demonstrate that the BH3 mimetic ABT-737 markedly improves tumor response to the antiestrogen tamoxifen. Despite abundant BCL-XL expression, similar efficacy was observed with the BCL-2 selective inhibitor ABT-199, revealing that BCL-2 is a crucial target. Unexpectedly, BH3 mimetics were found to counteract the side effect of tamoxifen-induced endometrial hyperplasia. Moreover, BH3 mimetics synergized with phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors in eliciting apoptosis. Importantly, these two classes of inhibitor further enhanced tumor response in combination therapy with tamoxifen. Collectively, our findings provide a rationale for the clinical evaluation of BH3 mimetics in therapy for breast cancer.


Blood | 2012

Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells.

Delphine Mérino; Seong Lin Khaw; Stephan P. Glaser; Daniel J. Anderson; Lisa D. Belmont; Chihunt Wong; Peng Yue; Mikara Robati; Belinda Phipson; W D Fairlie; Erinna F. Lee; Kirsteen J. Campbell; Cassandra J. Vandenberg; Suzanne Cory; Andrew W. Roberts; Mary J. C. Ludlam; David C. S. Huang

The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.


Oncogene | 2008

A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma

O Ndozangue-Touriguine; Michael Sebbagh; Delphine Mérino; Olivier Micheau; Jacques Bertoglio; Jacqueline Bréard

A pair of isogenic colon carcinoma cells, SW480 and 620, was used to investigate the mechanisms of acquired tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistance during tumour progression. Whereas primary tumour SW480 cells are sensitive to TRAIL-induced apoptosis, metastatic SW620 cells are resistant. The apoptotic signalling activated by TRAIL in SW480 cells is a type II pathway. We show that in SW620 cells, although caspase-8 is recruited and activated at the death-inducing-signalling complex and Bid is cleaved, this does not lead to caspase-9 activation. Comparison of Bcl-2, Bcl-xL and Mcl-1 levels in both cell lines showed no difference. In SW620 cells transfected with a tBid-GFP construct, tBid-GFP was correctly localized to the mitochondria. Thus, the resistance of SW620 cells is at the level of the mitochondria that can withstand large amounts of tBid. Although caspase-3 was directly cleaved by caspase-8 in SW620 cells to yield the p20 fragment, no further autocatalytic maturation into the p17 fragment was observed. We show that, in contrast to SW480 cells, the SW620 cell line expresses high amounts of X-linked inhibitor of apoptosis (XIAP). Downregulation of XIAP with bortezomib or small-interfering RNA was sufficient to restore the sensitivity of SW620 cells to TRAIL-induced apoptosis in the absence of SMAC/Diablo or cytochrome c release from the mitochondria. Thus, SW620 cells have developed a dual resistance to TRAIL-induced apoptosis: a block at the level of the mitochondria and, after a conversion to a type I pathway, an increased expression of XIAP which inhibits this pathway.


Cell Death & Differentiation | 2011

Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level.

Alexandre Morizot; Delphine Mérino; Najoua Lalaoui; Guillaume Jacquemin; Virginie Granci; Elisabetta Iessi; D Lanneau; F Bouyer; Eric Solary; Bruno Chauffert; Philippe Saas; Carmen Garrido; Olivier Micheau

TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which mainly occurs at the death-inducing signaling complex (DISC) level, through enhanced caspase-8 recruitment and activation, is compromised by c-FLIP expression and is independent of the mitochondria. Importantly, TRAIL-R4 expression prevents TRAIL-induced tumor regression in nude mice, but tumor regression induced by TRAIL can be restored with chemotherapy. Our results clearly support a negative regulatory function for TRAIL-R4 in controlling TRAIL signaling, and unveil the ability of TRAIL-R4 to cooperate with c-FLIP to inhibit TRAIL-induced cell death.


Leukemia | 2014

Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199

Seong Lin Khaw; Delphine Mérino; Mary Ann Anderson; Stefan P. Glaser; Andrew W. Roberts; David C. S. Huang

Overexpression of the prosurvival protein Bcl-2 marks many B-lymphoid malignancies and contributes to resistance to many commonly used chemotherapeutic agents. The first effective BH3 mimetic inhibitors of Bcl-2, ABT-737 and navitoclax, also target Bcl-xL, causing dose-limiting thrombocytopenia. This prompted the development of the Bcl-2-selective antagonist, ABT-199. Here we show that in lymphoid cells, ABT-199 specifically causes Bax/Bak-mediated apoptosis that is triggered principally by the initiator BH3-only protein Bim. As expected, malignant cells isolated from patients with chronic lymphocytic leukaemia are highly sensitive to ABT-199. However, we found that normal, untransformed mature B cells are also highly sensitive to ABT-199, both in vitro and in vivo. By contrast, the B-cell precursors are largely spared, as are cells of myeloid origin. These results pinpoint the probable impact of the pharmacological inhibition of Bcl-2 by ABT-199 on the normal mature haemopoietic cell lineages in patients, and have implications for monitoring during ABT-199 therapy as well as for the clinical utility of this very promising targeted agent.


Molecular Microbiology | 2002

A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model.

Delphine Mérino; Hélène Réglier-Poupet; Patrick Berche; Alain Charbit

The integrity of the genetic material of bacteria is guaranteed by a set of distinct repair mechanisms. The participation of these repair systems in bacterial pathogenicity has been addressed only recently. Here, we study for the first time the participation in virulence of the MutSL mismatch repair system of Listeria monocytogenes. The mutS and mutL genes, which are contiguous in the L. monocytogenes chromosome, were identified after in silico analysis. The deduced MutS shares 62% identity with MutS of Bacillus subtilis and 50% identity with HexA, its homologue in Streptococcus pneumoniae; MutL shares 59% identity with MutL of B. subtilis and 47% identity with HexB of S. pneumoniae. Functional analysis of the mutSL locus was studied by constructing a double knock‐out mutant. We showed that the deletion ΔmutSL induces: (i) a 100‐ to 1000‐fold increase in the spontaneous mutation rate; and (ii) a 10‐ to 15‐fold increase in the frequency of transduction, thus demonstrating the role of mutSL of L. monocytogenes in both mismatch repair and homologous recombination. We found that the deletion ΔmutSL moderately affected bacterial virulence, with a 1‐log increase in the lethal dose 50% (LD50) in the mouse. Strikingly, repeated passages of the mutant strain in mice reduced virulence further. Competition assays between wild‐type and mutant strains showed that the deletion ΔmutSL reduced the capacity of L. monocytogenes to survive and multiply in mice. These results thus demonstrate that, for the intracellular pathogen L. monocytogenes, a hypermutator phenotype is more deleterious than profitable to its virulence.


PLOS ONE | 2011

TRAIL-R4 Promotes Tumor Growth and Resistance to Apoptosis in Cervical Carcinoma HeLa Cells through AKT

Najoua Lalaoui; Aymeric Morlé; Delphine Mérino; Guillaume Jacquemin; Elisabetta Iessi; Alexandre Morizot; Sarah Shirley; Bruno Robert; Eric Solary; Carmen Garrido; Olivier Micheau

Background TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis. Methodology/Principal Findings We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent manner, signaling properties in the cervical carcinoma cell line HeLa, through Akt. Ectopic expression of TRAIL-R4 in HeLa cells induced morphological changes, with cell rounding, loss of adherence and markedly enhanced cell proliferation in vitro and tumor growth in vivo. Disruption of the PI3K/Akt pathway using the pharmacological inhibitor LY294002, siRNA targeting the p85 regulatory subunit of phosphatidylinositol-3 kinase, or by PTEN over-expression, partially restored TRAIL-mediated apoptosis in these cells. Moreover, the Akt inhibitor, LY294002, restituted normal cell proliferation index in HeLa cells expressing TRAIL-R4. Conclusions/Significance Altogether, these results indicate that, besides its ability to directly inhibit TRAIL-induced cell death at the membrane, TRAIL-R4 can also trigger the activation of signaling pathways leading to cell survival and proliferation in HeLa cells. Our findings raise the possibility that TRAIL-R4 may contribute to cervical carcinogenesis.


Apoptosis | 2006

Apoptotic, necrotic, or fused tumor cells: An equivalent source of antigen for dendritic cell loading

Nicolas Larmonier; Delphine Mérino; Alexandra Nicolas; Dominique Cathelin; Angélique Besson; Andrew Bateman; Eric Solary; François Martin; Emmanuel Katsanis; Bernard Bonnotte

The identification of the most efficient strategy for tumor antigen loading of dendritic cells (DCs) remains a challenge in cancer immunotherapy protocols. Autologous dead tumor cells have been demonstrated to constitute an acceptable source of multiple tumor-associated antigens (TAA) to pulse DCs. However the optimal approach for inducing cell death that would lead to effective endocytosis and activation of DCs remains controversial. In this study we have induced and defined 3 distinct mechanisms of tumor cell death (apoptosis, necrosis and fusion-mediated cell death), and investigated their differential effects on DCs. Bone marrow-derived DCs demonstrated comparable uptake of primary apoptotic, necrotic, or fused dead tumor cells. Furthermore, the distinct modes of cancer cell death had analogous potential in activating the transcription factors NF-κB and STAT1 and in maturing DCs, resulting in an equally effective stimulation of immune T cells. The current study therefore provides further informations on the use of dead whole tumor cells as antigen sources for effective active anti-cancer immunotherapy.


Oncogene | 2016

Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer

Delphine Mérino; S W Lok; Jane E. Visvader; Geoffrey J. Lindeman

The last three decades have seen significant progress in our understanding of the role of the pro-survival protein BCL-2 and its family members in apoptosis and cancer. BCL-2 and other pro-survival family members including Mcl-1 and BCL-XL have been shown to have a key role in keeping pro-apoptotic ‘effector’ proteins BAK and BAX in check. They also neutralize a group of ‘sensor’ proteins (such as BIM), which are triggered by cytotoxic stimuli such as chemotherapy. BCL-2 proteins therefore have a central role as guardians against apoptosis, helping cancer cells to evade cell death. More recently, an increasing number of BH3 mimetics, which bind and neutralize BCL-2 and/or its pro-survival relatives, have been developed. The utility of targeting BCL-2 in hematological malignancies has become evident in early-phase studies, with remarkable clinical responses seen in heavily pretreated patients. As BCL-2 is overexpressed in ~75% of breast cancer, there has been growing interest in determining whether this new class of drug could show similar promise in breast cancer. This review summarizes our current understanding of the role of BCL-2 and its family members in mammary gland development and breast cancer, recent progress in the development of new BH3 mimetics as well as their potential for targeting estrogen receptor-positive breast cancer.

Collaboration


Dive into the Delphine Mérino's collaboration.

Top Co-Authors

Avatar

Andreas Strasser

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Geoffrey J. Lindeman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jane E. Visvader

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bhupinder Pal

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

François Vaillant

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Najoua Lalaoui

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David C. S. Huang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Lorraine A. O'Reilly

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erinna F. Lee

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge