Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine Ndiaye-Lobry is active.

Publication


Featured researches published by Delphine Ndiaye-Lobry.


Cancer Cell | 2011

Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation

Kelly Moran-Crusio; Linsey Reavie; Alan Shih; Omar Abdel-Wahab; Delphine Ndiaye-Lobry; Camille Lobry; Maria E. Figueroa; Aparna Vasanthakumar; Jay Patel; Xinyang Zhao; Fabiana Perna; Suveg Pandey; Jozef Madzo; Chun-Xiao Song; Qing Dai; Chuan He; Sherif Ibrahim; Miloslav Beran; Jiri Zavadil; Stephen D. Nimer; Ari Melnick; Lucy A. Godley; Iannis Aifantis; Ross L. Levine

Somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) gene occur in a significant proportion of patients with myeloid malignancies. Although there are extensive genetic data implicating TET2 mutations in myeloid transformation, the consequences of Tet2 loss in hematopoietic development have not been delineated. We report here an animal model of conditional Tet2 loss in the hematopoietic compartment that leads to increased stem cell self-renewal in vivo as assessed by competitive transplant assays. Tet2 loss leads to a progressive enlargement of the hematopoietic stem cell compartment and eventual myeloproliferation in vivo, including splenomegaly, monocytosis, and extramedullary hematopoiesis. In addition, Tet2(+/-) mice also displayed increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 haploinsufficiency contributes to hematopoietic transformation in vivo.


Journal of Experimental Medicine | 2013

Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo

Omar Abdel-Wahab; Jie Gao; Mazhar Adli; Anwesha Dey; Thomas Trimarchi; Young Rock Chung; Cem Kuscu; Todd Hricik; Delphine Ndiaye-Lobry; Lindsay M. LaFave; Richard Koche; Alan H. Shih; Olga A. Guryanova; Eunhee Kim; Sheng Li; Suveg Pandey; Joseph Yusup Shin; Leon Telis; Jinfeng Liu; Parva K. Bhatt; Sebastien Monette; Xinyang Zhao; Christopher E. Mason; Christopher Y. Park; Bradley E. Bernstein; Iannis Aifantis; Ross L. Levine

Loss of Asxl1 results in myelodysplastic syndrome, whereas concomitant deletion of Tet2 restores HSC self-renewal and triggers a more severe disease phenotype distinct from that seen in single-gene knockout mice.


Journal of Experimental Medicine | 2013

Notch pathway activation targets AML-initiating cell homeostasis and differentiation

Camille Lobry; Panagiotis Ntziachristos; Delphine Ndiaye-Lobry; Philmo Oh; Luisa Cimmino; Nan Zhu; Elisa Araldi; Wenhuo Hu; Jacquelyn Freund; Omar Abdel-Wahab; Sherif Ibrahim; Scott A. Armstrong; Ross L. Levine; Christopher Y. Park; Iannis Aifantis

Notch behaves as a tumor suppressor in AML, and Notch activation induces cell cycle arrest, differentiation, and apoptosis of AML-initiating cells.


Nature Immunology | 2015

TET1 is a tumor suppressor of hematopoietic malignancy

Luisa Cimmino; Meelad M. Dawlaty; Delphine Ndiaye-Lobry; Yoon Sing Yap; Sofia Bakogianni; Yiting Yu; Sanchari Bhattacharyya; Rita Shaknovich; Huimin Geng; Camille Lobry; Jasper Mullenders; Bryan King; Thomas Trimarchi; Beatriz Aranda-Orgilles; Cynthia Liu; Steven Shen; Amit Verma; Rudolf Jaenisch; Iannis Aifantis

The methylcytosine dioxygenase TET1 (‘ten-eleven translocation 1’) is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Immunity | 2015

The Methylcytosine Dioxygenase Tet2 Promotes DNA Demethylation and Activation of Cytokine Gene Expression in T Cells

Kenji Ichiyama; Tingting Chen; Xiaohu Wang; Xiaowei Yan; Byung Seok Kim; Shinya Tanaka; Delphine Ndiaye-Lobry; Yuhua Deng; Yanli Zou; Pan Zheng; Qiang Tian; Iannis Aifantis; Lai Wei; Chen Dong

Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5 mC) conversion to 5-hydroxymethylcytosine (5 hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5 hmC in CD4(+) T cells and found that 5 hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5 hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.


Cancer Cell | 2012

Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia

Catherine M. Sawai; Jacquelyn Freund; Philmo Oh; Delphine Ndiaye-Lobry; Jamieson Bretz; Alexandros Strikoudis; Lali Genesca; Thomas Trimarchi; Michelle A. Kelliher; Marcus R. Clark; Jean Soulier; Selina Chen-Kiang; Iannis Aifantis

D-type cyclins form complexes with cyclin-dependent kinases (CDK4/6) and promote cell cycle progression. Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during blood differentiation. We show that only combined deletion of p27(Kip1) and retinoblastoma tumor suppressor (Rb) is sufficient to rescue the development of Ccnd3(-/-) thymocytes. Furthermore, we show that a small molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this devastating blood tumor.


Cancer Cell | 2013

Regulation of c-Myc Ubiquitination Controls Chronic Myelogenous Leukemia Initiation and Progression

Linsey Reavie; Shannon Buckley; Evangelia Loizou; Shoichiro Takeishi; Beatriz Aranda-Orgilles; Delphine Ndiaye-Lobry; Omar Abdel-Wahab; Sherif Ibrahim; Keiichi I. Nakayama; Iannis Aifantis

The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression. A decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML.


Nature Immunology | 2015

Erratum: TET1 is a tumor suppressor of hematopoietic malignancy

Luisa Cimmino; Meelad M. Dawlaty; Delphine Ndiaye-Lobry; Yoon Sing Yap; Sofia Bakogianni; Yiting Yu; Sanchari Bhattacharyya; Rita Shaknovich; Huimin Geng; Camille Lobry; Jasper Mullenders; Bryan King; Thomas Trimarchi; Beatriz Aranda-Orgilles; Cynthia Liu; Steven Shen; Amit Verma; Rudolf Jaenisch; Iannis Aifantis

Nat. Immunol. 16, 653–662 (2015); published online 13 April 2015; corrected after print 17 June 2015 In the version of this article initially published, labels reading “5hmC gain” were incorrectly included below the plots in Figure 6e, and the plot at right was mislabeled above (as “loss”). The plotat left should have a single label above reading “5hmC loss” and the plot at right should have a single label above reading “5hmC gain.


Cell | 2017

Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression

Luisa Cimmino; Igor Dolgalev; Yubao Wang; Akihide Yoshimi; Gaëlle H. Martin; Jingjing Wang; Victor Ng; Bo Xia; Matthew T. Witkowski; Marisa Mitchell-Flack; Isabella Grillo; Sofia Bakogianni; Delphine Ndiaye-Lobry; Miguel Torres Martín; Maria Guillamot; Robert S. Banh; Mingjiang Xu; Maria E. Figueroa; Ross A. Dickins; Omar Abdel-Wahab; Christopher Y. Park; Aristotelis Tsirigos; Benjamin G. Neel; Iannis Aifantis


Blood | 2012

Conditional Deletion of Asxl1 Results in Myelodysplasia

Omar Abdel-Wahab; Jie Gao; Mazhar Adli; Young Rock Chung; Richard Koche; Alan H. Shih; Suveg Pandey; Lindsay M. LaFave; Delphine Ndiaye-Lobry; Yu Sup Shin; Parva K. Bhatt; Jay Patel; Xinyang Zhao; Christopher Y. Park; Jacob D. Jaffe; Bradley E. Bernstein; Iannis Aifantis; Ross L. Levine

Collaboration


Dive into the Delphine Ndiaye-Lobry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Abdel-Wahab

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Y. Park

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge